精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=lnx+x-3的零点在区间(n,n+1)(n∈Z)内,则n=2.

分析 先判断该函数为增函数,再确定f(2)和f(3)的符号,进而得出函数的零点所在的区间.

解答 解:f(x)=lnx+x-3的定义域为(0,+∞),
且f(x)在定义域上单调递增,
又∵f(2)=ln2+2-3=1-ln2<0,
且f(3)=ln3>0,
∴f(2)•f(3)<0,
因此,函数f(x)的零点在区间(2,3)内,
所以,n=2,
故答案为:2.

点评 本题主要考查了函数零点的判定定理,涉及对数函数的单调性和数值大小的比较,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知直线l:y=kx+1与圆C:(x-1)2+(y-2)2=9相交于A,B两点,则AB长度的最小值为2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2015年国庆长假期间,各旅游景区人数发生“井喷”现象,给旅游区的管理提出了严峻的考验,国庆后,某旅游区管理部门对该区景点进一步改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x万元之间满足:y=$\frac{27}{50}$x-ax2-ln $\frac{x}{10}$,x∈(2,t],当x=10时,y=$\frac{22}{5}$.
(1)求y=f(x)的解析式;
(2)求旅游增加值y取得最大值时对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{4sinx+1}{2cosx-4}$的最大值是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有下列命题:
①若$\overrightarrow{p}$与$\overrightarrow{a}$,b共面,则$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$(x,y∈R);
②若$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$(x,y∈R),则$\overrightarrow{p}$与$\overrightarrow{a}$,$\overrightarrow{b}$共面;
③若$\overrightarrow{a}$、$\overrightarrow{b}$共线,则$\overrightarrow{a}$与$\overrightarrow{b}$所在直线平行;
④对空间任意一点O与不共线的三点A、B、C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$ (其中x、y、z∈R),则P、A、B、C四点共面.
其中正确的命题为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.方程xlnx-2=0的解所在的区间是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.据统计,黄种人人群中各种血型的人所占的比例见表:
血型ABABO
该血型的人所占的比例2829835
已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,AB型血的人可以接受任何一种血型的血,其他不同血型的人不能互相输血,某人是B型血,若他因病痛要输血,问在黄种人群中人找一个人,其血可以输给此人的概率为0.64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线(  )
A.垂直B.异面C.平行D.相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知P在△ABC所在平面内,$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$),λ∈[0,+∞),则点P的轨迹一定经过△ABC的垂心.

查看答案和解析>>

同步练习册答案