精英家教网 > 高中数学 > 题目详情
16.据统计,黄种人人群中各种血型的人所占的比例见表:
血型ABABO
该血型的人所占的比例2829835
已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,AB型血的人可以接受任何一种血型的血,其他不同血型的人不能互相输血,某人是B型血,若他因病痛要输血,问在黄种人群中人找一个人,其血可以输给此人的概率为0.64.

分析 由已知得B、O型血可以输给B型血的人,根据互斥事件的概率加法公式,能求出在黄种人群中人找一个人,其血可以输给此人的概率.

解答 解:对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,
它们是互斥的,由已知得:P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35,
∵B、O型血可以输给B型血的人,
∴“可以输血给小明”为事件B′∪D′,
根据互斥事件的概率加法公式,有P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64,
∴任找一个人,其血可以输给小明的概率为0.64.
故答案为:0.64.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件的概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.下列结论不正确的是④(填序号)
①若y=3,则y′=0;
②若f(x)=3x+1,则f′(1)=3;
③若y=-$\sqrt{x}$+x,则y′=-$\frac{1}{2\sqrt{x}}$+1;
④若y=sinx+cosx,则y′=cosx+sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0)的图象与x轴的交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{2π}{3}$个单位D.向右平移$\frac{2π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=lnx+x-3的零点在区间(n,n+1)(n∈Z)内,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.集合A={x|ax-3=0,a∈Z},若A?N*,则a形成的集合为{0,1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2x+a的反函数是y=f-1(x),设P(x+a,y1),Q(x,y2),R(2+a,y3)是y=f-1(x)图象上不同的三点;
(1)求y=f-1(x);
(2)如果存在正实数x,使得y1,y2,y3成等差数列,试用x表示实数a;
(3)在(2)的条件下,如果实数x是唯一的,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={y|y=log2x,1≤x≤4},B={y|y>a}.
(Ⅰ)当a=1时,求A∩B,(∁RB)∪A;
(Ⅱ)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各个面中,直角三角形的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则m的取值范围是(-∞,-3].

查看答案和解析>>

同步练习册答案