精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,y),若x∈{-1,0,1},y∈{-2,0,2,4},则事件“$\overrightarrow{a}$⊥$\overrightarrow{b}$”发生的概率是$\frac{1}{4}$.

分析 设“$\overrightarrow{a}$⊥$\overrightarrow{b}$”为事件A,由$\overrightarrow{a}$⊥$\overrightarrow{b}$,得2x+y=0,确定基本事件空间,A包括的事件,即可求出事件“$\overrightarrow{a}$⊥$\overrightarrow{b}$”发生的概率.

解答 解:设“$\overrightarrow{a}$⊥$\overrightarrow{b}$”为事件A,由$\overrightarrow{a}$⊥$\overrightarrow{b}$,得2x+y=0.
基本事件空间为Ω={(-1,-2),(-1,0),(-1,2),(-1,4),(0,-2),(0,0),(0,2),(0,4),(1,-2),(1,0),(1,2),(1,4)},共包含12个基本事件;
其中A={(-1,2),(0,0),(1,-2)},包含3个基本事件.
则P(A)=$\frac{3}{12}$=$\frac{1}{4}$,即$\overrightarrow{a}$⊥$\overrightarrow{b}$的概率为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查事件“$\overrightarrow{a}$⊥$\overrightarrow{b}$”发生的概率,考查向量数量积运算,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.以双曲线F为圆心且过左顶点A的圆交双曲线的一条渐近线于P、Q两点,PQ不小于虚轴长,则离心率的取值范围为(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知${a}^{\frac{4}{3}}$=$\frac{16}{9}$(a>0),则${log}_{\frac{4}{3}}$a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题:“?x∈R,ex<x”的否定是?x∈R,ex≥x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.命题P:不等式x2-2ax+4>0对于一切x∈R恒成立;命题q:直线y+(a-1)x+2a-1=0的斜率为正值,已知p∨q真,p∨q假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}中,a1+a2=1,a3+a4=4,则a5+a6=(  )
A.±16B.16C.32D.±32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式4x2-4x+1>0的解集是(  )
A.{x|x$>\frac{1}{2}$}B.{x|x≠$\frac{1}{2}$}C.RD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在如图所示的几何体中,四边形ABCD为平行四边形,平面AEC⊥平面ABCD,∠ACB=90°,EF∥BC,EF=$\frac{1}{2}$BC,AC=BC=2,AE=EC.
(Ⅰ)求证:AF=CF;
(Ⅱ)当二面角A-EC-D的平面角的余弦值为$\frac{{\sqrt{3}}}{3}$时,求三棱锥A-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xoy中,已知A(0,0),B(2,0),C(2,2),D(0,2),先将正方形ABCD绕原点逆时针旋转90°,再将所得图形的纵坐标压缩为原来的一半,横坐标不变,求连续两次变换所对应的矩阵M.

查看答案和解析>>

同步练习册答案