分析 先求出f(-1)=${2}^{-1}=\frac{1}{2}$,从而g(f(-1))=g($\frac{1}{2}$)=-$\frac{1}{\frac{1}{2}}$=-2.由此能求出结果.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x>0}\\{{2}^{x},x<0}\end{array}\right.$,
g(x)=$\left\{\begin{array}{l}{-\frac{1}{x},x>0}\\{x-1,x<0}\end{array}\right.$
∴f(-1)=${2}^{-1}=\frac{1}{2}$,
g(f(-1))=g($\frac{1}{2}$)=-$\frac{1}{\frac{1}{2}}$=-2.
故答案为:-2.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x0<a | B. | x0>b | C. | x0<c | D. | x0>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-a2b)2•(-ab2)3=-a7b8 | B. | [-(a3)2•(-b2)3]3=a18b18 | ||
| C. | (-a3)2•(-b2)3=a6b6 | D. | (-a2b3)3÷(-ab2)3=a3b3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {$-\sqrt{2}$,$\sqrt{2}$,log4 6} | B. | {$-\sqrt{2}$,log4 6} | C. | {$\sqrt{2}$,log4 6} | D. | {$-\sqrt{2}$,$\sqrt{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com