精英家教网 > 高中数学 > 题目详情
直线y=2x-1在y轴上的截距是(  )
A、1
B、-1
C、
1
2
D、-
1
2
考点:直线的截距式方程
专题:直线与圆
分析:利用斜截式的意义即可得出.
解答: 解:直线y=2x-1在y轴上的截距是-1.
故选:B.
点评:本题考查了斜截式的意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,求山高MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,若a=8,b=10,A=45°,满足条件的三角形有(  )
A、0个B、1个C、2个D、无数个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2
3x+1
(a∈R).
①是否存在实数a使得函数f(x)为奇函数?若存在,请说明理由;
②判断函数的单调性,并利用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的公差为2,a2+a8=16,则a6=(  )
A、6B、8C、10D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=22.
(1)求通项an
(2)求前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x2+4
x

(1)判断函数f(x)的奇偶性;
(2)证明函数f(x)在[2,+∞)单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
4
2ax+a
(a>0,且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求实数a;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱的底边边长为1侧棱长为2,三棱柱内是否能放进一个体积为
4
3
125
的小球?

查看答案和解析>>

同步练习册答案