精英家教网 > 高中数学 > 题目详情
6.用反证法证明命题“若abc=0,则a,b,c中至少有一个为0”时,假设正确的是(  )
A.假设a,b,c中只有一个为0B.假设a,b,c都不为0
C.假设a,b,c都为0D.假设a,b,c不都为0

分析 反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行解答.

解答 解:用反证法证明命题“若abc=0,则a,b,c中至少有一个为0”时,假设正确的是:假设a,b,c都不为0.
故选:B.

点评 本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数f(x)=sinx+cosx的单调增区间为$[-\frac{3}{4}π+2kπ,\frac{π}{4}+2kπ]k∈Z$;已知$cos(α+\frac{π}{12})=\frac{3}{5}$,且$α∈(0,\frac{π}{2})$,则$f(2α+\frac{π}{12})$=$\frac{{24\sqrt{6}-7\sqrt{2}}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与角-420°终边相同的角是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.计算sin77°cos47°-sin13°cos43°的值等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数y=f(x)是定义在R上的偶函数,且对任意实数x,都有f(x+1)=f(x-1)成立.已知当x∈[1,2]时,f(x)=logax.
( I )求x∈[-1,1]时,函数f(x)的表达式;
( II )若f(0)=1,在区间[-1,1]上,解关于x的不等式$f(x)>\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“m=1”是“函数f(x)=(m2-4m+4)x2”为幂函数的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对于△ABC,有如下四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形,
②若sinB=cosA,则△ABC是直角三角形
③若sin2A+sin2B<sin2C,则△ABC是钝角三角形
④若$\frac{a}{cos\frac{A}{2}}$=$\frac{b}{cos\frac{B}{2}}$=$\frac{c}{cos\frac{C}{2}}$,则△ABC是等边三角形.
其中正确的命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列比较大小正确的是(  )
A.sin(-$\frac{π}{18}$)$<sin(-\frac{π}{10})$B.sin(-$\frac{π}{18}$)$>sin\frac{π}{10}$C.sin(-$\frac{π}{18}$)$>sin(-\frac{π}{10})$D.sin$\frac{π}{18}$$>sin\frac{π}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2-(b-1)x+1,其中a∈(-2,0),b∈R.
(1)当a=-1时,解不等式f(x)+f(-x)+3x>0;
(2)若函数f(x)在区间(-2,-1)内恰有一个零点,求a-b的取值范围;
(3)设b>1,当函数f(x)的定义域为[$\frac{1}{a},-\frac{1}{a}$]时,值域为[$\frac{3}{2a}$,-3a],求a,b.

查看答案和解析>>

同步练习册答案