精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinx+cos2x.
(1)求f(
π
4
)
的值.
(2)求函数f(x)的最大值及取得最大值时x的值.
考点:三角函数的最值
专题:三角函数的求值
分析:(1)根据f(x)的解析式,求得f(
π
4
)的值.
(2)根据f(x)=sin2x+cos2x=
2
sin(2x+
π
4
),可得函数的最大值,此时,由2x+
π
4
=2kπ+
π
2
,k∈z,求得 x的值.
解答: 解:(1)∵f(x)=sin2x+cos2x,∴f(
π
4
)=sin
π
2
+cos
π
2
=1
(2)f(x)=sin2x+cos2x=
2
sin(2x+
π
4
),所以函数的最大值为
2

此时,2x+
π
4
=2kπ+
π
2
,k∈z,x=kπ+
π
4
,k∈z.
点评:本题主要考查辅助角公式,正弦函数的值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、“p∨q为真”是“p∧q为真”的充分不必要条件
B、设有一个回归直线方程为
?
y
=2-1.5x
,则变量x每增加一个单位,
?
y
平均减少1.5个单位
C、若a,b∈[0,1],则不等式a2+b2
1
4
成立的概率是
π
4
D、已知空间直线a,b,c,若a⊥b,b⊥c,则a∥c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)=Asin(2x+φ)+b(A>0,0<φ<π)的最大值是3,最小值为-1
(1)求A、b、φ的值;
(2)求函数y=f(x+
π
4
)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,景点A在景点B的正北方向2千米处,景点C在景点B的正东方向2
3
千米处.
(Ⅰ)游客甲沿CA从景点C出发行至与景点B相距
7
千米的点P处,记∠PBC=α,求sinα的值;
(Ⅱ)甲沿CA从景点C出发前往景点A,乙沿AB从景点A出发前往景点B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时.若甲乙两人之间通过对讲机联系,对讲机在该景区内的最大通话距离为3千米,问有多长时间两人不能通话?(精确到0.1小时,参考数据:
5
≈2.2,
15
≈3.9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x-2sin2x
(1)求函数f(x)的最小正周期;        
(2)解方程f(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定整数n(n≥3),记f(x)为集合{1,2,…2n-1}的满足如下两个条件的子集A的元素个数的最小值:
a)1∈A,2n-1∈A;
b)A中的元素(除1外)均为A中的另两个(可以相同)元素的和.
(1)求f(3)的值;
(2)求证:f(100)≤108.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知钝角三角形的三边长是三个连续偶数,求此三角形的三边长和面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(-
π
2
-α)•cos(-
2
-α)=
60
169
,且
π
4
<α<
π
2
,求sinα与cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动
π
3
个单位长度,所得图象的函数解析式为
 

查看答案和解析>>

同步练习册答案