精英家教网 > 高中数学 > 题目详情
6.已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x,则$f({-\frac{9}{2}})$=(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

分析 先确定函数f(x)的周期为2,再利用函数f(x)是定义在R上的偶函数,当x∈[0,1]时,f(x)=2x,即可得出结论.

解答 解:∵f(x+2)=f(x)对x∈R恒成立,
∴f(x)的周期为2,(x)是定义在R上的偶函数,
∴$f({-\frac{9}{2}})$=f(-$\frac{1}{2}$)=f($\frac{1}{2}$) 
∵当x∈[0,1]时,f(x)=2x
∴f($\frac{1}{2}$)=$\sqrt{2}$,
故选:B.

点评 本题考查抽象函数及其应用,考查函数的周期性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|lnx≤1},B={x|-1<x<3},则集合A∩B=(  )
A.{x|-1<x<3}B.{x|-1<x≤e}C.{x|0<x≤e}D.{x|e≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,PA=AD=4,AB=2,以AC中点O为球心,AC为直径的球面交线段PD(不含端点)于M.
(1)求证:面ABM⊥面PCD;
(2)求三棱锥P-AMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=3+cosθ}\\{y=4+sinθ}\end{array}\right.$(θ为参数).以原点为极点、x轴正半轴为极轴建立极坐标系,已知曲线C2:ρ(sinθ-kcosθ)=3,k为实数.
(1)求曲线C1的普通方程及曲线C2的直角坐标方程;
(2)若点P在曲线C2上,从点P向C1作切线,切线长的最小值为2$\sqrt{2}$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在实数集R上的偶函数f(x),当x≥0时,f(x)=ex,若存在t∈R,对任意x∈[1,m](m>1,m∈N),都有f(x+t)≤ex,则m的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(a-bx3)ex,$g(x)=\frac{lnx}{x}$,且函数f(x)的图象在点(1,e)处的切线与直线2ex+y-1=0平行.
 (Ⅰ)求a,b;
(Ⅱ)求证:当x∈(0,1)时,f(x)-g(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t为参数).以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=2acosθ(a>0),且曲线C与直线l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)设A、B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是等差数列,{bn}是各项均为正数的等比数列,a1=b1=1,a3b2=14,a3-b2=5.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中$φ∈(0,\frac{π}{2})$,则函数g(x)=cos(2x-φ)的图象(  )
A.关于点$(\frac{π}{12},0)$对称
B.关于轴$x=-\frac{5π}{12}$对称
C.可由函数f(x)的图象向右平移$\frac{π}{6}$个单位得到
D.可由函数f(x)的图象向左平移$\frac{π}{3}$个单位得到

查看答案和解析>>

同步练习册答案