精英家教网 > 高中数学 > 题目详情
1.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(  )
A.$y=\frac{1}{x}$B.y=lgxC.y=|x|-1D.$y={({\frac{1}{2}})^{lnx}}$

分析 根据函数奇偶性和单调性的性质进行判断即可.

解答 解:A.$y=\frac{1}{x}$是奇函数,不满足条件.
B.y=lgx的定义域为(0,+∞),函数为非奇非偶函数,不满足条件.
C.y=|x|-1是偶函数,当x>0时,y=x-1为增函数,满足条件.
D.函数的定义域为(0,+∞),函数为非奇非偶函数,不满足条件.
故选:C.

点评 本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数奇偶性和单调性的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的首项为1,若4a1,2a2,a3成等差数列,数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,则满足不等式Sn>$\frac{125}{63}$的n的最小值为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合M={1,2,3,4},N={x|x(x-3)<0},则M∩N等于(  )
A.{1,2,3}B.{1,2}C.{x|1<x<3}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.甲、乙两人进行定点投篮比赛,在距篮筐3米线内设一点A,在点A处投中一球得2分,不中得0分,在距篮筐3米线段外设一点B,在点B处投中一球得3分,不中得0分,已知甲乙两人在A点投中的概率都是$\frac{1}{2}$,在B点投中的概率都是$\frac{1}{3}$,且在A,B两点处投中与否相互独立,设定甲乙两人现在A处各投篮一次,然后在B处各投篮一次,总得分高者获胜.
(Ⅰ)求甲投篮总得分ξ的分布列和数学期望;
(Ⅱ)求甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若复数z=a+2i(i为虚数单位,a∈R)满足|z|=3,则a的值为±$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,BC=7,cosA=$\frac{1}{5}$,sinC=$\frac{2\sqrt{6}}{7}$.若动点P满足$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),则点的轨迹与直线AB,AC所围成的封闭区域的面积为(  )π
A.$3\sqrt{6}$B.$4\sqrt{6}$C.$6\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={-2,-1,0,1,2},集合B=(-∞,0],在A∩B=(  )
A.{1,2}B.{-2,-1}C.{-2,-1,0}D.{1,2,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若复数z满足$\frac{(2+i)^{2}}{z}$=i,则z=4-3i.

查看答案和解析>>

同步练习册答案