精英家教网 > 高中数学 > 题目详情
9.命题“对于任意的x∈R,x2+1>0”的否定是(  )
A.对于任意的x∈R,x2+1≤0B.存在x∈R,x2+1≤0
C.存在x∈R,x2+1<0D.存在x∈R,x2+1>0

分析 直接利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题“对于任意的x∈R,x2+1>0”的否定是:存在x∈R,x2+1≤0.
故选:B.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设f′(x)是f(x)的导函数,f″(x)是f′(x)的导函数,若函数f(x)在区间I上恒有f″(x)≥0,则称f(x)是区间I上的凸函数,则下列函数在[-1,1]上是凸函数的是(  )
A.f(x)=sinxB.f(x)=-cosxC.f(x)=x3-xD.f(x)=-ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12$\sqrt{6}$海里;在A处看灯塔C在货轮的北偏西30°,距离为8$\sqrt{3}$海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.
(1)请在方框内用铅笔与直尺画出图形,并标明三个角度的位置和大小;
(2)A处与D处之间的距离;
(3)灯塔C与D处之间的距离(用近似值表示,四舍五入,取整数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从{1,2,3}中随机选取一个数为a,从{1,2,3,4,5}中随机选取一个数为b,则a>b的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.满足条件|z-i|=|z+3+4i|的复数z在复平面内对应的点的轨迹是(  )
A.一条直线B.两条直线C.D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题P:在R上定义运算?:x?y=(1-x)y,不等式x?ax<1对任意实数x恒成立;命题Q:若不等式$\frac{{x}^{2}-ax+6}{x+1}$≥2对任意的x∈N*恒成立.若P∧Q为假命题,P∨Q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示是y=f(x)的导数图象,则正确的判断是(  )
①f(x)在(-3,1)上是增函数;②x=-1是f(x)的极小值点;
③f(x)在(2,4)上是减函数,在(-1,2)上是增函数;④x=2是f(x)的极小值点.
A.①②③B.②③C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.z1=1-2i,z2=3+4i,z3=2+i,$w={z_1}^2$+$\overline{z_2}-\frac{i}{z_3}$,求复数w.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C:$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t为参数).
(1)写出曲线C和直线l的普通方程;
(2)过曲线C上任意一点P作与l夹角为45°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

同步练习册答案