分析 把x≥0时的f(x)改写成分段函数,求出其最小值,由函数的奇偶性可得x<0时的函数的最大值,由对?x∈R,都有f(x-1)≤f(x),可得2a2-(-4a2)≤1,求解该不等式得答案.
解答 解:当x≥0时
f(x)=$\left\{\begin{array}{l}{x-3{a}^{2},}&{x>2{a}^{2}}\\{-{a}^{2},}&{{a}^{2}<x≤2{a}^{2}}\\{-x,}&{0≤x≤{a}^{2}}\end{array}\right.$,![]()
作图可知,当x>0时,f(x) 的最小值f(x)min=-a2,
∵函数f(x) 为奇函数;
∴当x<0 时f(x) 的最大值f(x)max=a2,
∵对任意实数x都有f(x-1)≤f(x),
∴3a2-(-3a2)≤1,
即6a2≤1,
解得$-\frac{\sqrt{6}}{6}$≤x≤$\frac{\sqrt{6}}{6}$,故实数的取值范围是[$-\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$],
故答案为:[$-\frac{\sqrt{6}}{6}$,$\frac{\sqrt{6}}{6}$]
点评 本题考查了恒成立问题,考查分段函数的应用以及函数奇偶性的性质,运用了数学转化思想方法是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{3}$,1]∪[2,3) | B. | [-1,$\frac{1}{2}$]∪[$\frac{4}{3}$,$\frac{8}{3}$] | C. | [-$\frac{3}{2}$,$\frac{1}{2}$]∪[1,2] | D. | [-$\frac{3}{2}$,-$\frac{1}{3}$]∪[$\frac{1}{2}$,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p2 | B. | $\sqrt{3}$p2 | C. | 2p2 | D. | 2$\sqrt{3}$p2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com