精英家教网 > 高中数学 > 题目详情
4.如果方程ax+b=0的解集为A,方程cx+d=0的解集为B,试用A,B表示下列方程的解集.
(1)(ax+b)(cx+d)=0;
(2)(ax+b)(cx+d)≠0.

分析 解方程,结合集合的含义,即可得出结论.

解答 解:(1)(ax+b)(cx+d)=0,∴ax+b=0或cx+d=0,∴(ax+b)(cx+d)=0的解集是A∪B;
(2)(ax+b)(cx+d)≠0,∴ax+b≠0且cx+d≠0,∴(ax+b)(cx+d)≠0的解集是CUA∩CUB.

点评 本题考查集合的含义,考查集合的表示,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.(x+2y)(x-y)7的展开式中x5y3的系数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某商店规定,某种商品一次性购买10kg以下按零售价格50元/kg销售;若一次性购买量满10kg,可打9折;若一次性购买量满20kg,可按更优惠价格40元/kg供货.
(1)试写出支付金额y(元)与购买量x(kg)之间的函数关系式;
(2)分别求出购买15kg和25kg应支付的金额.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{2x+a,x<1}\\{-x-2a,x≥1}\end{array}\right.$,若f(1-a)=f(1+a),则a的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{b}$=(cosx,sinx),x∈[0,$\frac{π}{2}$].若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若存在实数θ,使得2x2-4xsinθ+3cosθ=0成立,则x的取值范围为[-$\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x|x-4|(x∈R),若存在正实数k,使得方程f(x)=k在区间(2,+∞)上有两个根a,b,其中a<b,则ab-2(a+b)的取值范围是(  )
A.(2,2+2$\sqrt{2}$)B.(-4,0)C.(-2,2)D.(-4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)等于(  )
A.$\frac{1}{{2}^{x}}$B.2x-2C.log${\;}_{\frac{1}{2}}$xD.log2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)若α+β=45°,求证:(tanα+1)(tanβ+1)=2;
(2)若(tanα+1)(tanβ+1)=2,求α+β的值.

查看答案和解析>>

同步练习册答案