精英家教网 > 高中数学 > 题目详情
14.在数列{an}中,a1=1,an=$\frac{{a}_{n-1}}{3{a}_{n-1}+1}$;(n≥2).
(1)求{an}的通项公式an
(2)设{bn}满足bn=$\frac{1}{{2}^{n}•{a}_{n}}$,求数列{bn}的前n项和Sn
(3)若λan+$\frac{1}{{a}_{n+1}}$≥λ,对任意n≥2的整数恒成立,求实数λ的取值范围.

分析 (1)由题意知an≠0,$\frac{1}{{a}_{n}}$=$\frac{1}{\frac{{a}_{n-1}}{3{a}_{n-1}+1}}$=3+$\frac{1}{{a}_{n-1}}$,从而可得{$\frac{1}{{a}_{n}}$}是以1为首项,3为公差的等差数列,从而求通项公式;
(2)化简bn=$\frac{1}{{2}^{n}•{a}_{n}}$=$\frac{1}{{2}^{n}}$(3n-2),从而利用错位相减法求其和;
(3)化简λan+$\frac{1}{{a}_{n+1}}$≥λ得λ≤$\frac{(3n+1)(3n-2)}{3n-3}$=(3n-3)+$\frac{4}{3n-3}$+5,从而转化为求(3n-3)+$\frac{4}{3n-3}$+5的最小值问题.

解答 解:(1)∵a1=1,an=$\frac{{a}_{n-1}}{3{a}_{n-1}+1}$;
∴an≠0,$\frac{1}{{a}_{n}}$=$\frac{1}{\frac{{a}_{n-1}}{3{a}_{n-1}+1}}$=3+$\frac{1}{{a}_{n-1}}$,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=3,
∴{$\frac{1}{{a}_{n}}$}是以1为首项,3为公差的等差数列,
∴$\frac{1}{{a}_{n}}$=1+3(n-1)=3n-2,
∴an=$\frac{1}{3n-2}$,
a1=1也满足上式,
∴an=$\frac{1}{3n-2}$.
(2)bn=$\frac{1}{{2}^{n}•{a}_{n}}$=$\frac{1}{{2}^{n}}$(3n-2),
Sn=$\frac{1}{2}$•1+$\frac{1}{4}$•4+…+$\frac{1}{{2}^{n}}$(3n-2),①
2Sn=1+$\frac{1}{2}$•4+…+$\frac{1}{{2}^{n-1}}$(3n-2),②
②-①得,
Sn=1+3•$\frac{1}{2}$+3•$\frac{1}{4}$+…+3•$\frac{1}{{2}^{n-1}}$-$\frac{1}{{2}^{n}}$(3n-2)
=1+3$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{1}{{2}^{n}}$(3n-2)
=4-$\frac{3}{{2}^{n-1}}$-$\frac{1}{{2}^{n}}$(3n-2).
(3)∵λan+$\frac{1}{{a}_{n+1}}$≥λ,
∴λ$\frac{1}{3n-2}$+3n+1≥λ,
∴λ≤$\frac{(3n+1)(3n-2)}{3n-3}$=(3n-3)+$\frac{4}{3n-3}$+5,
∵n≥2,∴3n-3≥3,
∴(3n-3)+$\frac{4}{3n-3}$+5≥3+$\frac{4}{3}$+5=$\frac{28}{3}$,
∴λ≤$\frac{28}{3}$.

点评 本题考查了数列的性质的判断与应用,同时考查了函数思想与整体思想的应用,同时考查了构造法的应用及恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知长方体ABCD-A1B1C1D1中,AB=2,BC=BB1=$\sqrt{2}$,在四边形ABC1D1内随机取一点M,则满足∠AMB≥135°的概率为(  )
A.$\frac{π}{8}$B.$\frac{π-2}{8}$C.$\frac{2π-3\sqrt{3}}{12}$D.$\frac{2\sqrt{2}-2}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线交两渐近线于点A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+u$\overrightarrow{OB}$(λ,μ∈R),λ2+u2=$\frac{5}{8}$,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列情况下的概率.
(1)在集合{-3,-2,-1,1,2,3}中随机取两个数,分别记为a,b,求使得方程x2+2ax-b2+π=0有实根的概率
(2)在区间[-π,π]内随机取两个数,分别记为a,b,求使得方程x2+2ax-b2+π=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若曲线C:$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$与直线ρcosθ+2ρsinθ=2交于A、B两点
①求曲线C与直线在平面直角坐标系中的方程;
②求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在k进制中,十进制数103记为87,则k等于(  )
A.6B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.己知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(1)+f(2)+f(3)+…+f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直二面角α-l-β中,线段AB的端点A,B分别在α,β内,且AB与α,β所成的角均为30°,则AB与l所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.cos$\frac{11}{4}$π的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案