精英家教网 > 高中数学 > 题目详情
3.在直二面角α-l-β中,线段AB的端点A,B分别在α,β内,且AB与α,β所成的角均为30°,则AB与l所成的角为(  )
A.30°B.45°C.60°D.90°

分析 直接根据AC⊥β以及常用的结论:cosθ=cos∠ABC•cos∠DCB即可求出结果;

解答 解:如图所示,作AC⊥l,垂足为C,BD⊥l,垂足为D.
连接BC,AD,∵AB与α,β所成的角均为30°,
∴∠ABC=∠DAB=30°
设AB=2,则AC=1,BC=1.
作CE∥DB,BE∥CD,连接AE,则直线AB与CD所成的角就是AB与BE所成角,设为θ,
则AE=$\sqrt{2}$,BC=$\sqrt{3}$,可得BE=$\sqrt{B{C}^{2}-C{E}^{2}}$=$\sqrt{2}$,而作AC⊥l,垂足为C,BD⊥l,垂足为D.可得CD⊥AC,CD⊥CE,可得CD⊥平面ACE,可得BE⊥平面AEC,∴AE⊥BE,
故θ=45°;
故选:B.

点评 本小题主要考查空间直线所成的角以及二面角的度量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.执行如图的程序框图,若输出的y值为5,则判断框中可填入的条件是(  )
A.i<3B.i<4C.i<5D.i<6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,an=$\frac{{a}_{n-1}}{3{a}_{n-1}+1}$;(n≥2).
(1)求{an}的通项公式an
(2)设{bn}满足bn=$\frac{1}{{2}^{n}•{a}_{n}}$,求数列{bn}的前n项和Sn
(3)若λan+$\frac{1}{{a}_{n+1}}$≥λ,对任意n≥2的整数恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)的定义域为(2+3a,2-a),且f(x+1)为奇函数,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设不等式组$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≤2}\\{y≥0}\end{array}\right.$,表示的平面区域D,P(x,y)是区域D内任意一点,则3x+y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四棱锥P-ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是边长为2的等边三角形,$PA=DM=2\sqrt{3}$.
(Ⅰ)求证:平面PAM⊥平面PDM;
(Ⅱ)若点E为PC中点,求二面角P-MD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读如图所示的程序框图,当输出的结果S为0时,判断框中应填(  )
A.n≤4B.n≤5C.n≤7D.n≤8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.6826,则P(X>4)等于(  )
(附:若随机变量ξ服从正态分布N(μ,σ2),且P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.0.1588B.0.1587C.0.1586D.0.1585

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足an+2-an+1=an+1-an(n∈N+),且a1008=$\frac{π}{2}$,若函数f(x)=sin2x+2cos2$\frac{x}{2}$,记yn=f(an),则数列{yn}的前2015项和为(  )
A.2015B.-2015C.0D.1

查看答案和解析>>

同步练习册答案