| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{9}{8}$ |
分析 由方程可得渐近线,可得A,B,P的坐标,由已知向量式可得λ+μ=1,λ-μ=$\frac{b}{c}$,解之可得λμ的值,由λ2+u2=$\frac{5}{8}$,可得a,c的关系,由离心率的定义可得.
解答 解:双曲线的渐近线为:y=±$\frac{b}{a}$x,设焦点F(c,0),
则当x=c时,y═±$\frac{b}{a}$•c=±$\frac{bc}{a}$,
即A(c,$\frac{bc}{a}$),B(c,-$\frac{bc}{a}$),P(c,$\frac{{b}^{2}}{a}$),
因为$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,
所以(c,$\frac{{b}^{2}}{a}$)=((λ+μ)c,(λ-μ)$\frac{bc}{a}$),
所以λ+μ=1,λ-μ=$\frac{b}{c}$,
解得:λ=$\frac{c+b}{2c}$,μ=$\frac{c-b}{2c}$,
∵λ2+u2=$\frac{5}{8}$,
∴($\frac{c+b}{2c}$)2+($\frac{c-b}{2c}$)2=$\frac{5}{8}$,
即$\frac{2{c}^{2}+2{b}^{2}}{4{c}^{2}}$=$\frac{5}{8}$,
即c2=4b2.
则c2=4(c2-a2),
则3c2=4a2.
$\sqrt{3}$c=2a,
则e=$\frac{2}{\sqrt{3}}$=$\frac{{2\sqrt{3}}}{3}$,
故选:A.
点评 本题主要考查双曲线离心率的计算,根据交点坐标,结合平面向量的数量积公式是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | C. | 充要 | D. | 非充分非必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com