17£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²C1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+cost}\\{y=sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²C2ÓëÔ²C1ÍâÇÐÓÚÔ­µãO£¬ÇÒÁ½Ô²Ô²ÐĵľàÀë|C1C2|=3£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÔ²C1ºÍÔ²C2µÄ¼«×ø±ê·½³Ì£»
£¨2£©¹ýµãOµÄÖ±Ïßl1¡¢l2ÓëÔ²C2ÒìÓÚµãOµÄ½»µã·Ö±ðΪµãAºÍµãD£¬ÓëÔ²C1ÒìÓÚµãOµÄ½»µã·Ö±ðΪCºÍB£¬ÇÒl1¡Íl2£¬ÇóËıßÐÎABCDÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©Çó³öÁ½Ô²µÄÆÕͨ·½³Ì£¬ÔÙ»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©Éè³öl1£¬l2µÄ²ÎÊý·½³Ì£¬·Ö±ð´úÈëÁ½Ô²·½³ÌµÃ³öOA£¬OB£¬OC£¬ODµÄ³¤£¬µÃµ½ËıßÐεÄÃæ»ý¹ØÓÚl1µÄÇãб½Ç¦ÁµÄº¯Êý½âÎöʽ£¬ÀûÓæÁµÄ·¶Î§ºÍÕýÏÒº¯ÊýµÄÐÔÖÊÇó³öÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©Ô²C1µÄÆÕͨ·½³ÌΪ£¨x+1£©2+y2=1£¬¡àÔ²C1µÄÔ²ÐÄΪC1£¨-1£¬0£©£¬°ë¾¶r1=1£®
Ô²C1µÄÒ»°ã·½³ÌΪ£ºx2+y2+2x=0£¬
¡àÔ²C1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2+2¦Ñcos¦È=0£¬¼´¦Ñ=-2cos¦È£®
¡ßÔ²C2ÓëÔ²C1ÍâÇÐÓÚÔ­µãO£¬ÇÒÁ½Ô²Ô²ÐĵľàÀë|C1C2|=3£¬
¡àÔ²C2µÄÔ²ÐÄC2£¨2£¬0£©£¬°ë¾¶r2=2£®
¡àÔ²C2µÄ±ê×¼·½³ÌΪ£¨x-2£©2+y2=4£¬»¯ÎªÒ»°ãʽ·½³ÌΪ£ºx2+y2-4x=0£¬
¡àÔ²C2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È=0£¬¼´¦Ñ=4cos¦È£®
£¨2£©ÉèÖ±Ïßl1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý0$£¼¦Á£¼\frac{¦Ð}{2}$£©£¬l2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-tsin¦Á}\\{y=tcos¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
°Ñ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2-4x=0µÃt2-4tcos¦Á=0£¬¡à|OA|=4cos¦Á£¬
ͬÀí¿ÉµÃ|OB|=2sin¦Á£¬|OC|=2cos¦Á£¬|OD|=4sin¦Á£¬
¡ßAC¡ÍBD£¬
¡àSËıßÐÎABCD=$\frac{1}{2}$£¨OA+OC£©£¨OB+OD£©=18sin¦Ácos¦Á=9sin2¦Á£®
¡àµ±$¦Á=\frac{¦Ð}{4}$ʱ£¬ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óÖµ9£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¶¨Ò壺ÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×îСֵ³ÆÎªÇúÏßCµ½Ö±ÏßlµÄ¾àÀ룬ÒÑ֪˫ÇúÏßC1£º$\frac{{y}^{2}}{a}$-x2=1µ½Ö±Ïßl£ºy+$\sqrt{2}$=0µÄ¾àÀëµÈÓÚÔ²C2£ºx2+y2-8x-10y+16=0µ½Ö±Ïßl£ºy+$\sqrt{2}$=0£¬ÔòʵÊýa=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÒÑÖª¦Î·þ´ÓÕý̬·Ö²¼N£¨0£¬¦Ä2£©£¬ÇÒP£¨-2¡Ü¦Î¡Ü2£©=0.4£¬ÔòP£¨¦Î£¾2£©=0.3£»
¢Úº¯Êýf£¨x-1£©ÊÇżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬Ôòf£¨2${\;}^{\frac{1}{8}}$£©£¾f£¨log2$\frac{1}{8}$£©£¾f[£¨$\frac{1}{8}$£©2]
¢ÛÒÑÖªÖ±Ïßl1£ºax+3y-1=0£¬l2£ºx+by+1=0£¬Ôòl1¡Íl2µÄ³äÒªÌõ¼þÊÇ$\frac{a}{b}$=-3£¬
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ¢Ù¢Ú£¨°ÑÄãÈÏΪÕýÈ·µÄÐòºÅ¶¼ÌîÉÏ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèË«ÇúÏß$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãΪF£¬¹ýµãF×÷xÖáµÄ´¹Ïß½»Á½½¥½üÏßÓÚµãA£¬BÁ½µã£¬ÇÒÓëË«ÇúÏßÔÚµÚÒ»ÏóÏ޵Ľ»µãΪP£¬ÉèOÎª×ø±êÔ­µã£¬Èô$\overrightarrow{OP}$=¦Ë$\overrightarrow{OA}$+u$\overrightarrow{OB}$£¨¦Ë£¬¦Ì¡ÊR£©£¬¦Ë2+u2=$\frac{5}{8}$£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{2\sqrt{3}}}{3}$B£®$\frac{{3\sqrt{5}}}{5}$C£®$\frac{{3\sqrt{2}}}{2}$D£®$\frac{9}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÖ±Ïßax+by-6=0£¨a£¾0£¬b£¾0£©±»Ô²x2+y2-2x-4y=0½ØµÃµÄÏÒ³¤Îª2$\sqrt{5}$£¬ÔòabµÄ×î´óֵΪ$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÇóÏÂÁÐÇé¿öϵĸÅÂÊ£®
£¨1£©ÔÚ¼¯ºÏ{-3£¬-2£¬-1£¬1£¬2£¬3}ÖÐËæ»úÈ¡Á½¸öÊý£¬·Ö±ð¼ÇΪa£¬b£¬ÇóʹµÃ·½³Ìx2+2ax-b2+¦Ð=0ÓÐʵ¸ùµÄ¸ÅÂÊ
£¨2£©ÔÚÇø¼ä[-¦Ð£¬¦Ð]ÄÚËæ»úÈ¡Á½¸öÊý£¬·Ö±ð¼ÇΪa£¬b£¬ÇóʹµÃ·½³Ìx2+2ax-b2+¦Ð=0ÓÐʵ¸ùµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈôÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}\right.$ÓëÖ±ÏߦÑcos¦È+2¦Ñsin¦È=2½»ÓÚA¡¢BÁ½µã
¢ÙÇóÇúÏßCÓëÖ±ÏßÔÚÆ½ÃæÖ±½Ç×ø±êϵÖеķ½³Ì£»
¢ÚÇó|AB|µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¼ºÖª¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬f£¨-1£©=1£¬Ôòf£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2016£©=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆË㣺
£¨1£©Çóy=2$\sqrt{x}$-sin$\frac{x}{2}$cos$\frac{x}{2}$-e-xµÄµ¼Êý£®
£¨2£©${¡Ò}_{0}^{4}$|x-2|dx£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸