分析 利用向量的数量积,化简求解,代入向量的夹角公式,求解即可.
解答 解:由$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=-2,得$\overrightarrow{a}•\overrightarrow{b}-{\overrightarrow{a}}^{2}$=-2,$\overrightarrow{a}•\overrightarrow{b}$=2,所以$cos<\overrightarrow a•\overrightarrow b>=\frac{\overrightarrow a•\overrightarrow b}{|\overrightarrow a||\overrightarrow b|}=\frac{1}{2}$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 本题考查平面向量的数量积的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{6}$,$\sqrt{2}$) | B. | ($\sqrt{2}$,$\sqrt{6}$) | C. | (-$\sqrt{2}$,-$\sqrt{6}$) | D. | (-$\sqrt{6}$,-$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 15 | C. | 35 | D. | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{8}$ | B. | $\frac{π-2}{8}$ | C. | $\frac{2π-3\sqrt{3}}{12}$ | D. | $\frac{2\sqrt{2}-2}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com