精英家教网 > 高中数学 > 题目详情
13.将3个不同的小球放入4个盒子中,有64种不同的放法.

分析 根据题意,分析可得每个小球都有4种可能的放法,直接由分步计数原理计算可得答案.

解答 解:根据题意,第一个小球可以放入任意一个盒子,即有4种不同的放法,
同理第二个小球也有4种不同的放法,
第三个小球也有4种不同的放法,
即每个小球都有4种可能的放法,
根据分步计数原理知共有即4×4×4=64不同的放法,
故答案为:64.

点评 本题考查分步计数原理的运用,注意题干没有限制盒子里小球的数目,不能用排列、组合公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某校一个校园景观的主题为“托起明天的太阳”,其主体是一个半径为5米的球体,需设计一个透明的支撑物将其托起,该支撑物为等边圆柱形的侧面,厚度忽略不计.轴截面如图所示,设∠OAB=α.(注:底面直径和高相等的圆柱叫做等边圆柱.)
(1)用α表示圆柱的高;
(2)实践表明,当球心O和圆柱底面圆周上的点D的距离达到最大时,景观的观赏效果最佳,试求出OD最大值,并求出此时α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.底面为正三角形的直三棱柱ABC-A1B1C1的各棱长都为1,M,N分别为CC1,BB1的中点,则点N到面A1BM的距离为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC中,b=2,B=45°,C=105°,则a=(  )
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\sqrt{3}$-1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,a=7,b=4$\sqrt{3},c=\sqrt{13}$,则△ABC的最小角为$\frac{π}{6}$弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列集合A到B的对应中,不能构成映射的是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\underset{lim}{n→∞}$($\frac{2n+1}{2n-1}$)3n=e3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下:
甲说:“C或D 作品获得一等奖”
乙说:“A 作品获得一等奖”
丙说:“B,D 两项作品未获得一等奖”
丁说:“C 作品获得一等奖”
若这四位同学中有且仅有两位说的话是对的,则获得一等奖的作品是A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)={sin^2}ωx-\sqrt{3}sinωxcosωx+\frac{1}{2}(ω>0)$,y=f(x)的图象与直线y=2相交,且两相邻交点之间的距离为π.
(1)求f(x)的解析式,并求f(x)的单调增区间;
(2)已知函数$g(x)=mcos(x+\frac{π}{3})-m+2$,若对任意的x1,x2∈[0,π],均有f(x1)≥g(x2),求m的取值范围.

查看答案和解析>>

同步练习册答案