2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µã£¨1£¬-$\frac{\sqrt{2}}{2}$£©ÊÇÍÖÔ²CÉϵĵ㣬ÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µãA£¨x0£¬y0£©£¨y0¡Ù0£©ÔÚÍÖÔ²CÉÏ£¬ÈôµãNÓëµãA¹ØÓÚÔ­µã¶Ô³Æ£¬Á¬½ÓAF2²¢ÑÓ³¤ÓëÍÖÔ²CµÄÁíÒ»¸ö½»µãΪM£¬Á¬½ÓMN£¬Çó¡÷AMNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬ÓÖb2=a2-c2=c2£¬½«£¨1£¬-$\frac{\sqrt{2}}{2}$£©´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$£¬½âµÃc=1£¬¼´¿ÉÇó³öÍÖÔ²·½³Ì£®
£¨¢ò£©ÉèÖ±ÏßAMµÄ·½³ÌÊÇx=my+1£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½Çó³ö|AM|£¬Çó³öµãO£¨0£¬0£©µ½Ö±ÏßAMµÄ¾àÀ룬¿ÉµÃ¡÷OAMµÄÃæ»ý£¬ÀûÓûù±¾²»µÈʽ£¬¼´¿ÉÇó¡÷OAMµÄÃæ»ýµÄ×î´óÖµ£®¡÷AMNÃæ»ýµÄ×î´óÖµÊÇ¡÷OAMµÄÃæ»ýµÄ×î´óÖµµÄ2±¶£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬
b2=a2-c2=c2£¬
½«£¨1£¬-$\frac{\sqrt{2}}{2}$£©´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$£¬
½âµÃ£ºc=1£¬
Ôòa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÍÖÔ²µÄÓÒ½¹µãF£¨1£¬0£©£¬ÉèÖ±ÏßAMµÄ·½³ÌÊÇx=my+1£¬Óë$\frac{{x}^{2}}{2}+{y}^{2}=1$ÁªÁ¢£¬
¿ÉµÃ£¨m2+2£©y2+2my-1=0£¬
ÉèA£¨x1£¬y1£©£¬M£¨x2£¬y2£©£¬Ôòx1=my1+1£¬x2=my2+1£¬
ÓÚÊÇ|AM|=$\sqrt{1+{m}^{2}}$|y1-y2|=$\frac{2\sqrt{2}£¨{m}^{2}+1£©}{{m}^{2}+2}$£¬µãO£¨0£¬0£©µ½Ö±ÏßMNµÄ¾àÀëd=$\frac{1}{\sqrt{{m}^{2}+1}}$£®
ÓÚÊÇ¡÷AMNµÄÃæ»ýs=2sOAM=|MN|d=$\frac{2\sqrt{2£¨{m}^{2}+1£©}}{{m}^{2}+2}$=2$\sqrt{\frac{2}{{m}^{2}+1+\frac{1}{{m}^{2}+1}+2}}$£®
¡ß${m}^{2}+1+\frac{1}{{m}^{2}+1}¡Ý2$£¬¡à¡÷AMNµÄÃæ»ýS$¡Ü2¡Á\sqrt{\frac{2}{2+2}}=\sqrt{2}$£®µ±ÇÒ½öµ±¼´m=0ʱȡµ½×î´óÖµ$\sqrt{2}$£®

µãÆÀ ´úÈë·¨Çó¹ì¼£·½³Ì¹Ø¼üÊÇÈ·¶¨×ø±êÖ®¼äµÄ¹ØÏµ£¬Ö±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµÎÊÌâ³£³£ÐèÒªÁªÁ¢·½³Ì×飬ÀûÓÃΤ´ï¶¨Àí£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªaÊÇÆ½Ãæ¦ÁÍâµÄÒ»ÌõÖ±Ïߣ¬¹ýa×÷Æ½Ãæ¦Â£¬Ê¹¦Â¡Î¦Á£¬ÕâÑùµÄ¦Â£¨¡¡¡¡£©
A£®Ç¡ÄÜ×÷Ò»¸öB£®ÖÁ¶àÄÜ×÷Ò»¸öC£®ÖÁÉÙÄÜ×÷Ò»¸öD£®²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚ£¨x-4£©5µÄÕ¹¿ªÊ½ÖУ¬º¬x3µÄÏîµÄϵÊýΪ£¨¡¡¡¡£©
A£®20B£®40C£®80D£®160

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=an+2£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇÒSn=2-bn£®
£¨¢ñ£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©Éècn=anbn£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèaΪʵÊý£¬º¯Êýf£¨x£©=£¨x2-a£©e1-x£®
£¨¢ñ£©µ±x¡Ý1ʱy=f£¨x£©´æÔÚбÂÊΪ2µÄÇÐÏߣ¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©µ±f£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¨x1£¼x2£©Ê±£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹x2f£¨x1£©+a¦Ë£¨e${\;}^{1-{x}_{1}}$+1£©¡Ü0£¿Çë˵Ã÷ÄãµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖª¸÷Ïî¾ùΪÕûÊýµÄÊýÁÐ{an}ÖУ¬a1=2£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN*£¬Âú×ãan+1-an£¼2n+$\frac{1}{2}£¬{a_{n+2}}-{a_n}£¾3¡Á{2^n}$-1£¬Ôòa2017=22017£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¹Å´úÊý×ÖÖø×÷¡¶¾ÅÕÂËãÊõ¡·ÓÐÈçÏÂÎÊÌ⣺¡°½ñÓÐÅ®×ÓÉÆÖ¯£¬ÈÕ×Ô±¶£¬ÎåÈÕÎå³ß£¬ÎÊÈÕÖ¯¼¸ºÎ£¿¡±Òâ˼ÊÇ£º¡°Ò»Å®×ÓÉÆÓÚÖ¯²¼£¬Ã¿ÌìÖ¯µÄ²¼¶¼ÊÇǰһÌìµÄ2±¶£¬ÒÑÖªËý5Ìì¹²Ö¯²¼5³ß£¬ÎÊÕâÅ®×ÓÿÌì·Ö±ðÖ¯²¼¶àÉÙ£¿¡±¸ù¾ÝÉÏÌâµÄÒÑÖªÌõ¼þ£¬ÈôҪʹ֯²¼µÄ×ܳßÊý²»ÉÙÓÚ50³ß£¬¸ÃÅ®×ÓËùÐèµÄÌìÊýÖÁÉÙΪ£¨¡¡¡¡£©
A£®7B£®8C£®9D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=£¨x2-x-$\frac{1}{a}$£©eax£¨a£¾0£©£®
£¨1£©Çóº¯Êýy=f£¨x£©µÄ×îСֵ£»
£¨2£©Èô´æÔÚΨһʵÊýx0£¬Ê¹µÃf£¨x0£©+$\frac{3}{a}$=0³ÉÁ¢£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÊýÁÐ{an}ºÍ{bn}£¨bn¡Ù0£¬n¡ÊN*£©£¬Âú×ãa1=b1=1£¬anbn+1-an+1bn+bn+1bn=0
£¨1£©Áîcn=$\frac{{a}_{n}}{{b}_{n}}$£¬Ö¤Ã÷ÊýÁÐ{cn}ÊǵȲîÊýÁУ¬²¢Çó{cn}µÄͨÏʽ
£¨2£©Èôbn=2n-1£¬ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸