精英家教网 > 高中数学 > 题目详情
若x-y≥0,x+y-2≤0,y≥-2,则z=3x+y的最大值是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最大值.
解答: 解:不等式组对应的平面区域如图:
由z=3x+y得y=-3x+z,
平移直线y=-3x+z,则由图象可知当直线y=-3x+z经过点A时直线y=-3x+z的截距最大,
此时z最大,由
y=-2
x+y-2=0

x=4
y=-2
,即A(4,-2),
此时z=3×4-2=10,
故答案为:10.
点评:本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α是第三象限的角,且f(α)=
sin(π-α)cos(2π-α)tan(-α+
3
2
π)•tan(-α-π)
sin(-α-π)

(1)化简f(α);
(2)若cos(α-
3
2
π)=
1
5
,求f(α);
(3)若α=-
31
3
π,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),F1、F2是椭圆的两个焦点,P为椭圆上的一个动点,过F2作∠F1PF2的外角平分线的垂线,垂足为M,则OM的长为定值.类比此命题,在双曲线中也有命题q:已知双曲线
x2
a2
-
y2
b2
=1(a>b>0),F1、F2是双曲线的两个焦点,P为双曲线上的一个动点,过F2作∠F1PF2
 
的垂线,垂足为M,则OM的长定值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,anan+1=4n(n∈N*),则a2+a4+…+a2n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x3-3x+1在点(2,3)处的切线方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
(1+i)2n
1-i
+
(1-i)2n
1+i
=2n,则最小正整数n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果F1为椭圆的左焦点,A、B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1⊥F1A,PO∥AB(O为椭圆的中心)时,椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β是两个不同的平面,m,n是两条不同直线.
①若m⊥α,α⊥β,则m∥β
②若m⊥α,α∥β,则m⊥β
③若m?α,n?α,m∥β,n∥β,则α∥β
④若m⊥α,n⊥β,m⊥n,则α⊥β
以上命题正确的是
 
.(将正确命题的序号全部填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

a1=3,a2=6,且an+2=an+1-an,则a2014=
 

查看答案和解析>>

同步练习册答案