精英家教网 > 高中数学 > 题目详情
求函数y=sinx,x∈[
π
4
,π]的最大值和最小值.
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:根据正弦函数的图象和性质得到函数的单调区间,继而求出最值.
解答: 解:∵函数y=sinx在区间[
π
4
π
2
]
上时增函数,在区间[
π
2
,π]
上是减函数,
∴函数y=sinx在区间[
π
4
π
2
]
上的最大值是sin
π
2
=1,最小值是sin
π
4
=
2
2

函数y=sinx在区间[
π
2
,π]
上的最大值是sin
π
2
=1,最小值是sinπ=0,
故函数y=sinx,x∈[
π
4
,π]的最大值是1,最小值是0.
点评:本题主要考查了三角形函数的图象和性质,关键是找到单调区间,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,过F2与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若点M在以F1F2为直径的圆上,则双曲线的离心率为(  )
A、
2
B、
3
C、2
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知4a=2,lgx=a,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)在不等式组
2x+y≤4
x-y≥0
x-2y≤2
所确定的平面区域内,则z=x+2y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000株的生长情况进行研究,现采用分层抽样方法抽取50株为样本,统计结果如表:
高茎矮茎合计
圆粒111930
皱粒13720
合计242650
(1)现采用分层抽样方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率;
(2)根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考):
P(K2≥k)0.150.100.0500.0250.0100.001
k2.0722.7063.8415.0246.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+1|+|x-a|
(Ⅰ)若a=3,解不等式f(x)≥6;
(Ⅱ)若不等式f(x)≥6对任意的实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
|x+1|+|x-2|+a

(1)当a=-5时,求函数f(x)的定义域;
(2)若存在正数a使函数f(x)的最小值为2且正数m,n满足m+2n=a,试求m2+n2最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知S1为直线x=0,y=4-t2及y=4-x2所围成的面积,S2为直线x=2,y=4-t2及y=4-x2所围成图形的面积(t为常数).
(1)若t=
2
时,求S2
(2)若t∈(0,2),求S1+S2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sin
ωx
2
,a),
n
=(acos
ωx
2
,cos2
ωx
2
)且a>0,f(x)=
m
n
.函数f(x)的图象过最大值点(x0,3)及相邻的最小值点(x0+π,-1).
(1)求f(x)的解析式;
(2)若α∈(-
π
2
π
2
)且f(α)=
3
2
,求
cos(α+
π
6
)
sinα
的值.

查看答案和解析>>

同步练习册答案