精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.
(1)求a的取值范围;
(2)设x1 , x2是f(x)的两个零点,证明:x1+x2<2.

【答案】
(1)

解:∵函数f(x)=(x﹣2)ex+a(x﹣1)2

∴f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),

①若a=0,那么f(x)=0(x﹣2)ex=0x=2,

函数f(x)只有唯一的零点2,不合题意;

②若a>0,那么ex+2a>0恒成立,

当x<1时,f′(x)<0,此时函数为减函数;

当x>1时,f′(x)>0,此时函数为增函数;

此时当x=1时,函数f(x)取极小值﹣e,

由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;

当x<1时,ex<e,x﹣2<﹣1<0,

∴f(x)=(x﹣2)ex+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,

令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2

则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,

故函数f(x)在x<1存在一个零点;

即函数f(x)在R是存在两个零点,满足题意;

③若﹣ <a<0,则ln(﹣2a)<lne=1,

当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,

ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

当ln(﹣2a)<x<1时,x﹣1<0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,

当x>1时,x﹣1>0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

故当x=ln(﹣2a)时,函数取极大值,

由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣1]2+1}<0得:

函数f(x)在R上至多存在一个零点,不合题意;

④若a=﹣ ,则ln(﹣2a)=1,

当x<1=ln(﹣2a)时,x﹣1<0,ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

当x>1时,x﹣1>0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

故函数f(x)在R上单调递增,

函数f(x)在R上至多存在一个零点,不合题意;

⑤若a<﹣ ,则ln(﹣2a)>lne=1,

当x<1时,x﹣1<0,ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

当1<x<ln(﹣2a)时,x﹣1>0,ex+2a<eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,

当x>ln(﹣2a)时,x﹣1>0,ex+2a>eln(﹣2a+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

故当x=1时,函数取极大值,

由f(1)=﹣e<0得:

函数f(x)在R上至多存在一个零点,不合题意;

综上所述,a的取值范围为(0,+∞)


(2)

证明:∵x1,x2是f(x)的两个零点,

∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,

∴﹣a= =

令g(x)= ,则g(x1)=g(x2)=﹣a,

∵g′(x)=

∴当x<1时,g′(x)<0,g(x)单调递减;

当x>1时,g′(x)>0,g(x)单调递增;

设m>0,则g(1+m)﹣g(1﹣m)= =

设h(m)= ,m>0,

则h′(m)= >0恒成立,

即h(m)在(0,+∞)上为增函数,

h(m)>h(0)=0恒成立,

即g(1+m)>g(1﹣m)恒成立,

令m=1﹣x1>0,

则g(1+1﹣x1)>g(1﹣1+x1g(2﹣x1)>g(x1)=g(x22﹣x1>x2

即x1+x2<2.


【解析】利用导数研究函数的极值;函数的零点.(1)由函数f(x)=(x﹣2)ex+a(x﹣1)2可得:f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),对a进行分类讨论,综合讨论结果,可得答案.(2)设x1 , x2是f(x)的两个零点,则﹣a= = ,令g(x)= ,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=
设h(m)= ,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.
【考点精析】通过灵活运用函数的极值与导数和函数的零点,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系内从点P1(0,0)作x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1Q1P2Q2;…;PnQn,记点的坐标为(,0)(k=1,2,…,n).

(1)试求的关系(k=2,…,n);

(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.

(1)证明平面ABEF⊥平面EFDC;
(2)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.

(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,确定n的最小值;
(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角对的边分别为,已知.

)若,求的取值范围;

)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:t为参数),直线与曲线C分别交于MN

)写出曲线C和直线的普通方程;

)若成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为(  )
A.35
B.20
C.18
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长均相等的正四棱锥P-ABCD中,O为底面正方形的重心,MN分别为侧棱PAPB的中点,有下列结论:

PC∥平面OMN

②平面PCD∥平面OMN

OMPA

④直线PD与直线MN所成角的大小为90°.

其中正确结论的序号是______.(写出所有正确结论的序号)

查看答案和解析>>

同步练习册答案