精英家教网 > 高中数学 > 题目详情
已知一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切.
(1)求动圆圆心M的轨迹方程,并说明它是什么样的曲线;
(2)直线y=x+1与M的轨迹相交于不同的两点P、Q,求PQ的中点的坐标.
考点:轨迹方程,直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:(1)求出两个圆的圆心与半径,设出动圆的圆心与半径,判断动圆的圆心轨迹,推出结果即可.
(2)联立直线与椭圆的方程,设出交点坐标,利用韦达定理求出中点坐标即可.
解答: 解:(1)圆x2+y2+6x+5=0的圆心为A(-3,0),半径为2;
圆x2+y2-6x-91=0的圆心为B(3,0),半径为10;
设动圆圆心为M(x,y),半径为x;
则MA=2+r,MB=10-r;
于是MA+MB=12>AB=6
所以,动圆圆心M的轨迹是以A(-3,0),B(3,0)为焦点,长轴长为12的椭圆.
a=6,c=3,b2=a2-c2=27;
所以M的轨迹方程为
x2
36
+
y2
27
=1

(2)由
y=x+1
x2
36
+
y2
27
=1
,消去y得:7x2+8x-104=0,
设P(x1,y1),Q(x2,y2),PQ中点为N(x0,y0);则x1+x2=-
8
7

x0=
x1+x2
2
=-
4
7

∴y0=x0+1=
3
7

所以PQ的中点坐标为(-
4
7
3
7
)
点评:本题考查轨迹方程的求法,直线与椭圆的位置关系的应用,考查分析问题解决问题的能力,转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解下列不等式:
(1)|x-1|+|x-2|<2;         
(2)0<x-
1
x
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2
3x+1
是在R上的奇函数,
(1)求实数a的值;
(2)判断函数f(x)在R上的单调性;
(3)若对于任意实数t∈
1
2
,不等式f(t+2)+f(k•t2-1)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

 已知函数f(x)=
|log4x,0<x≤4
-
1
2
x+3,x>4

(1)画出函数f(x)的图象;
(2)若a,b,c互不相等,且f(a)=f(b)=f(c),求abc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图.已知向量
e1
e2
,求作向量2
e1
-
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,<
a
b
>=60°,则|2
a
-
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=xf(x)的图象关于y轴对称,则函数y=f(x)的图象关于(  )
A、原点对称B、x轴对称
C、y轴对称D、直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
6
)-2cosx

(1)若sinx=
4
5
(
π
2
<x<π)
,求f(x)的值;
(2)求函数f(x)的最小正周期与单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数为同一函数的是(  )
A、f(x)=x+1,g(x)=
x2-1
x-1
B、f(x)=1,g(x)=x0
C、f(x)=2x,g(x)=
4x
D、f(x)=(
x
)4+1,g(x)=x2
+1

查看答案和解析>>

同步练习册答案