精英家教网 > 高中数学 > 题目详情
2.如图,在四棱锥P-ABCD中,底面为矩形,平面PCD丄平面ABCD,PC丄PD,PD=AD,E为PA的中点.
(1)求证:PC∥平面BDE.
(2)求证DE丄平面PAC.

分析 (1)设AC,BD交于点O,连结OE,则由中位线定理得出OE∥PC,故PC∥平面BDE;
(2)由面面垂直的性质得出AD⊥平面PCD,得出PC⊥AD,又PC⊥PD,故而PC⊥平面PAD,于是PC⊥DE,又由三线合一得出DE⊥PA,故DE⊥平面PAC.

解答 解:(1)设AC∩BD=O,连结OE,
∵底面ABCD是矩形,∴O是AC的中点,
∴OE是△PAC的中位线,
∴PC∥OE,又PC?平面BDE,OE?平面BDE,
∴PC∥平面BDE.
(2)∵平面PCD丄平面ABCD,平面PCD∩平面ABCD=CD,AD⊥CD,AD?平面ABCD,
∴AD⊥平面PCD,∵PC?平面PCD,
∴PC⊥AD,
又PC⊥PD,PD?平面PAD,AD?平面PAD,PD∩AD=D,
∴PC⊥平面PAD,∵DE?平面PAD,
∴PC⊥DE,
∵PD=AD,E是PA中点,
∴DE⊥PA,又PA?平面PAC,PC?平面PAC,PA∩PC=P,
∴DE⊥平面PAC.

点评 本题考查了面面垂直的性质,线面位置关系的判定,属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-c)cosA=acosC.
(Ⅰ)求角A的大小
(Ⅱ)若a=3,求△ABC的周长最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=s-ke-x的图象在x=0处的切线方程为y=x.
(1)求s,k的值;
(2)若$g(x)=mlnx-{e^{-x}}+\frac{1}{2}{x^2}-(m+1)x+1(m>0)$,求函数h(x)=g(x)-f(x)的单调区间;
(3)若正项数列{an}满足${a_1}=\frac{1}{2}$,${a_n}={e^{{a_{n+1}}}}f({a_n})$,证明:数列{an}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:x2=8y的焦点为F,动点Q在C上,圆Q的半径为1,过点F的直线与圆Q切于点 P,则$\overrightarrow{F{P}}•\overrightarrow{FQ}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足2Sn=4an-1.则数列{$\frac{1}{lo{g}_{2}{a}_{n+3}{lo{g}_{2}{a}_{n+2}$}的前100项和为(  )
A.$\frac{97}{100}$B.$\frac{98}{99}$C.$\frac{99}{100}$D.$\frac{100}{101}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,满足2acosB=2c-b.
(1)求角A;
(2)若a是b,c的等比中项,判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x)的图象是折线ABCDE,如图,其中A(1,2),B(2,1),C(3,2),D(4,1),E(5,2),若直线y=kx+b与y=f(x)的图象恰有四个不同的公共点,则k的取值范围是(  )
A.(-1,0)∪(0,1)B.$(-\frac{1}{3},\frac{1}{3})$C.(0,1]D.$[{0.\frac{1}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\frac{{a}^{2}+asinx+2}{{a}^{2}+acosx+2}$(x∈R)的最大值为M(a),最小值为m(a),则M(a)•m(a)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$,$\overrightarrow{AE}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{DE}$等于(  )
A.$\frac{1}{3}$$\overrightarrow{CB}$B.-$\frac{1}{3}$$\overrightarrow{CB}$C.-$\frac{2}{3}$$\overrightarrow{CB}$D.$\frac{2}{3}$$\overrightarrow{CB}$

查看答案和解析>>

同步练习册答案