精英家教网 > 高中数学 > 题目详情
下列结论错误的是(  )
A、若点(2,3)在函数y=ax(a>0,且a≠1)的图象上,则点(3,2)必在函数y=logax的图象上
B、函数y=ax(a>0,且a≠1)的图象比过点(0,1),就是说函数y=logax的图象必过点(1,0)
C、若点(m,n)既在函数y=ax(a>0,且a≠1)的图象上,又在函数y=logax的图象上,则m=n
D、函数y=logax的图象(a>0,且a≠1)的图象与y轴不可能有交点
考点:命题的真假判断与应用
专题:函数的性质及应用
分析:利用互为反函数的性质即可判断出.
解答: 解:由于函数y=ax(a>0,且a≠1)与函数y=logax互为反函数,利用互为反函数的性质可知:
若y=ax(a>0,且a≠1)的图象比过点(a,b),就是说函数y=logax的图象必过点(b,a),可知A,B,D,正确,而C不正确.
故选:C.
点评:本题考查了互为反函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
x 18 13 10 -1
y 25 34 39 62
由表中数据得线性回归方程y=-2x+a,预测当气温为-4℃时,用电量的度数约为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x+y-4≥0
x+2y-7≤0
ax-y-2≤0
,且x2+y2的最小值为8,则正实数a的取值范围是(  )
A、(0,2]
B、[2,5]
C、[3,+∞)
D、(0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x与y之间的关系如下表:
X 1 3 5
y 4 8 15
则y与x的线性回归方程为y=bx+a必经过点(  )
A、(3,7)
B、(3,9)
C、(3.5,8)
D、(4,9)

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程
y
=0.67x+54.9,表中有一个数据模糊不清,请你推断出该数据的值为(  )
零件数x个 10 20 30 40 50
加工时间y(min) 62 75 81 89
A、75B、62C、68D、81

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题正确的个数是(  )
①存在这样的直线,既不与坐标轴平行也不经过任何整点;
②如果k与b都是无理数,则直线y=kx+b不经过任何整点;
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点;
④直线y=kx+b经过无穷多个整点,当且仅当k与b都是有理数;
⑤存在恰经过一个整点的直线.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|(
1
2
x≤1},B={x|x≥2},A∩∁RB=(  )
A、[0,2)
B、[0,2]
C、(1,2)
D、(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
)
,x∈R.
(1)求f(x)的最小正周期T;
(2)求f(0)的值;
(3)设α是第一象限角,且f(α+
π
3
)=
3
5
,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ角的顶点在原点,始边在x轴的正半轴上,终边经过点(3,-4),sin(2θ+
π
3
)的值为
 

查看答案和解析>>

同步练习册答案