精英家教网 > 高中数学 > 题目详情
若曲线与直线没有公共点,则的取值范围是________________.
 
如图所示,由于曲线|y|=2x+1 的图象关于x轴对称,|y|>1 且图象过定点(0,2),(0,-2),故当-1≤b≤1时,曲线|y|=2x+1与直线y=b没有公共点.
解:由于曲线|y|=2x+1 的图象关于x轴对称,|y|>1,
且图象过定点(0,2),(0,-2),如图所示:

故当-1≤b≤1时,曲线|y|=2x+1与直线y=b没有公共点,
故答案为[-1,1].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

中心在原点,对称轴为坐标轴的双曲线C的两条渐近线与圆都相切,则双曲线C的离心率是                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点,且与直线相切.
(1)求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,且满足
?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知向量),,动点的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当时,已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,通径长为1,且焦点与短轴两端点构成等边三角形,(1)求椭圆的方程;(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,点Q分 所成比为λ,点E分所成比为μ,求证λ+μ为定值,并计算出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的一组斜率为2的平行弦中点的轨迹是(     )
A.椭圆B.圆C.双曲线D.射线(不含端点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线 与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得?
② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示双曲线,则的取值范围是       (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心在原点,焦点在轴上,左右焦点分别为,且它们在第一象限的交点为是以为底边的等要三角形,若,双曲线的离心率的取值范围为,则该椭圆的离心率的取值范围为       

查看答案和解析>>

同步练习册答案