精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)定义在R上的偶函数,且在[0,+∞)上为减函数,若f(log2m)+f(log${\;}_{\frac{1}{2}}$m)≤2f(1),则m的取值范围是(  )
A.[2,+∞)B.(-∞,$\frac{1}{2}$]C.($\frac{1}{2}$,2]D.(0,$\frac{1}{2}$]∪[2,+∞)

分析 由偶函数的性质将f(log2m)+f(log${\;}_{\frac{1}{2}}$m)≤2f(1),化为:f(log2m)≤f(1),再由f(x)的单调性列出不等式,根据对数函数的性质求出m的取值范围.

解答 解:因为函数f(x)是定义在R上的偶函数,
所以f(log${\;}_{\frac{1}{2}}$m)=f(log2m)f(log2m),
则f(log2m)+f(log${\;}_{\frac{1}{2}}$m)≤2f(1)为:f(log2m)≤f(1),
因为函数f(x)在区间[0,+∞)上为减函数
所以|log2m|≥1,解得0<m≤$\frac{1}{2}$或m≥2,
则m的取值范围是(0,$\frac{1}{2}$]∪[2,+∞).
故选:D

点评 本题考查函数的奇偶性、单调性的应用,以及对数函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)满足f(-x)=f(x),当a,b∈(-∞,0)时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b).若f(2m+1)>f(2m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一种放射性元素,最初的质量为500克,按每年10%衰减.
(1)求t年后,这种放射性元素的质量w的表达式;
(2)用求出的函数表达式,求这种放射性元素的半衰期.(放射性元素的原子核有半数发生衰变时所需要的时间,叫“半衰期”)(lg0.5≈-0.3010,lg0.9≈-0.0458,结果精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+bx+1满足f(1+x)=f(1-x),$g(x)=\frac{f(x)}{x}$.
(1)求函数f(x)的解析式;
(2)判断g(x)在[1,2]上的单调性并用定义证明你的结论;
(3)求g(x)在[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sinx-a(0≤x≤$\frac{5π}{2}$)的三个零点成等比数列,则log2a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直观图(如图所示)中,四边形O'A'B'C'为菱形且边长为2cm,则在xOy坐标系中,四边形OABC的面积为8cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an},它的前n项和为Sn,若an=$\frac{1}{(2n+1)(2n-1)}$,则Sn=(  )
A.$\frac{2}{2n+1}$B.$\frac{2n}{2n+1}$C.$\frac{n}{2n+1}$D.$\frac{1}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an}是等比数列,a1=2,a4=54;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3
(1)求数列{an}和{bn}的通项公式;
(2)设Un=b1+b4+b7+…+b3n-2,其中n=1,2,…,求U10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={a_n}•{2^{2{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案