分析 (1)利用二次函数的对称性求出b,然后求解函数的解析式.
(2)判断函数的单调性,利用单调性的定义证明即可.
(3)利用函数的单调性,直接求解函数的最值即可.
解答 解:(1)函数f(x)=x2+bx+1满足f(1+x)=f(1-x),
可知函数的对称轴为:x=1,所以$-\frac{b}{2}=1$,b=-2,
函数f(x)的解析式:f(x)=x2-2x+1.
(2)$g(x)=\frac{f(x)}{x}$=x+$\frac{1}{x}$-2,g(x)在[1,2]上的单调性是增函数,
证明:设1≤x1<x2≤2,x1-x2<0,$1-\frac{1}{{x}_{1}{x}_{2}}$>0,
g(x1)-g(x2)=x1-x2+$\frac{1}{{x}_{1}}$$-\frac{1}{{x}_{2}}$=(x1-x2)($1-\frac{1}{{x}_{1}{x}_{2}}$)<0,
g(x1)<g(x2),
所以函数g(x)在[1,2]上是增函数.
(3)由(2)可知,函数是增函数,函数的最小值为:g(1)=0,
函数的最大值为:g(2)=$\frac{1}{2}$.
点评 本题考查二次函数的简单性质以及解析式的求法,函数的单调性的判断与证明,单调性的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3(\sqrt{3}+\sqrt{2})}}{4}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{3}+\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | a<b<c | C. | c<b<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | (-∞,$\frac{1}{2}$] | C. | ($\frac{1}{2}$,2] | D. | (0,$\frac{1}{2}$]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com