精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)满足f(-x)=f(x),当a,b∈(-∞,0)时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b).若f(2m+1)>f(2m),求m的取值范围.

分析 判断函数的单调性,函数的奇偶性,化简f(2m+1)>f(2m),求解即可.

解答 解:当a,b∈(-∞,0)时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b),
所以f(x)在(-∞,0)上单调递增,
因为f(-x)=f(x),所以f(x)为偶函数,
所以f(x)在(0,+∞)上单调递减,
因为f(2m+1)>f(2m),
所以|2m+1|<|2m|,即4m+1<0,
解得m<-$\frac{1}{4}$.

点评 本题考查函数的奇偶性以及函数的单调性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.与函数f(x)=$\sqrt{{x}^{2}}$表示同一函数提(  )
A.g(x)=$\frac{{x}^{2}}{x}$B.g(x)=($\sqrt{x}$)2C.g(x)=xD.g(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(1班、3班做)已知函数f(x)=-$\frac{π}{12x}$,g(x)=xcosx-sinx,当x∈[-3π,3π]时,方程f(x)=g(x)的根的个数是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2sin xcos x-2sin2x+1(x∈R),若在△ABC中,内角A,B,C的对边分别为a,b,c,a=$\sqrt{3}$,A为锐角,且f(A+$\frac{π}{8}$)=$\frac{{\sqrt{2}}}{3}$,则△ABC面积的最大值为(  )
A.$\frac{{3(\sqrt{3}+\sqrt{2})}}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{3}+\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,g(x)是二次函数,且满足g(x)=0,g(x+1)=g(x)+x+1,则:
(1)求函数f(x)的解析式;
(2)求函数g(x)的解析式;
(3)画出h(x)=$\left\{\begin{array}{l}{f(x),x≥-2}\\{g(x),x<-2}\end{array}\right.$的图象,并根据图象写出h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简:tanα+$\sqrt{\frac{1}{co{s}^{2}α}-1}$+2sin2α+2cos2α,其中α是第四象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足$\left\{\begin{array}{l}{4x+3y=0}\\{x-y≥-14}\\{x-y≤7}\end{array}\right.$,则$\sqrt{{x}^{2}+{y}^{2}}$的取值范围是(  )
A.[0,10]B.[0,9]C.[2,10]D.[1,11]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC中,cosA=$\frac{1}{8}$,AB=4,AC=2,则∠A的角平分线AD的长为(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)定义在R上的偶函数,且在[0,+∞)上为减函数,若f(log2m)+f(log${\;}_{\frac{1}{2}}$m)≤2f(1),则m的取值范围是(  )
A.[2,+∞)B.(-∞,$\frac{1}{2}$]C.($\frac{1}{2}$,2]D.(0,$\frac{1}{2}$]∪[2,+∞)

查看答案和解析>>

同步练习册答案