(本小题满分12分)
在直角坐标系
中,以
为圆心的圆与直线
相切.
(I)求圆
的方程;
(II)圆
与
轴相交于
两点,圆内的动点
使
成等比数列,求
的取值范围.
科目:高中数学 来源: 题型:解答题
已知圆
的方程为
,过点
作直线与圆
交于
、
两点。![]()
(1)若坐标原点O到直线AB的距离为
,求直线AB的方程;
(2)当△
的面积最大时,求直线AB的斜率;
(3)如图所示过点
作两条直线与圆O分别交于R、S,若
,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于
点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分) 已知圆
的圆心
在
轴上,半径为1,直线
,被圆
所截的弦长为
,且圆心
在直线
的下方.
(I)求圆
的方程;
(II)设
,若圆
是
的内切圆,求△
的面积
的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图所示,已知以点
为圆心的圆与直线
相切.过点
的动直线
与圆
相交于
,
两点,
是
的中点,直线
与
相交于点
.![]()
(1)求圆
的方程;
(2)当
时,求直线
的方程.
(3)
是否为定值?如果是,求出其定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分).已知圆
与直线
相切。
(1)求以圆O与y轴的交点为顶点,直线在x轴上的截距为半长轴长的椭圆C方程;
(2)已知点A
,若直线与椭圆C有两个不同的交点E,F,且直线AE的斜率与直线
AF的斜率互为相反数;问直线的斜率是否为定值?若是求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
、已知圆O:x2+y2=13![]()
(1)证明:点A(-1,5)在圆O外。
(2)如图所示,经
过圆O上任P一点作y轴的垂线,垂足为Q,求线段PQ的中点M的轨迹方程。(12分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com