精英家教网 > 高中数学 > 题目详情
3.如图所示,用不同的五种颜色分别为A,B,C,D,E五部分着色,相邻部分不能用同一种颜色,但同一种颜色可以反复使用,也可不使用,则复合这些要求的不同着色的方法共有(  )
 A B
 C D
 E
A.500种B.520种C.540种D.560种

分析 由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A有5种涂法,B有4种涂法,C有3种,D有3种涂法,E有3种涂法,根据乘法原理可得结论.

解答 解:先涂A,则A有5种涂法,再涂B,因为B与A相邻,所以B的颜色只要与A不同即可,有4种涂法,
同理C有3种涂法,D有3种涂法,E有3种涂法,
由分步乘法计数原理可知,复合这些要求的不同着色的方法共有为5×4×3×3×3=540,
故选:C.

点评 本题以实际问题为载体,考查计数原理的运用,关键搞清是分类,还是分步.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某学校为了引导学生树立正确的消费观,对某班50名学生每天的零花钱(单位:元)进行了调查,将他们的零用钱分成5段[2,6),[6,10),[10,14),[14,18),[18,22),得到如下频率分布直方图.
(Ⅰ)求频率分布直方图中x值,并估计此班50名同学每天零用钱的众数和平均数;
(Ⅱ)若从每天零用钱在[14,22)中任取2人,求这两人在[18,22)中恰有一人的概率(视频率为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设m,n是两条不同的直线,α,β是两个不同的平面,则下列叙述正确的是(  )
A.若α∥β,m∥α,n∥β,则m∥nB.若α⊥β,m⊥α,n∥β,则m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,则α∥βD.若m⊥α,n?β,m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知y=f(x)在点(1,f(1))处的切线方程为y=x-1,且f′(x)=lnx+1,则函数f(x)的最小值为-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{sin(2x+\frac{π}{3})(x≥0)}\\{cos(ωx+φ)(x<0)}\end{array}\right.$(其中ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$).若对于任意的x均有f(x-$\frac{π}{6}$)=f($\frac{π}{3}$-x),则sin(ωφ)=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式||x-1|-3|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若在△ABC中,|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=5,|$\overrightarrow{AC}$|=4,则|5$\overrightarrow{AB}$+$\overrightarrow{BC}$|=$4\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设△ABC的三个内角A,B,C所对的边分别为a,b,c,点O为△ABC的外接圆的圆心,若满足a+b≥2c.
(1)求角C的最大值;
(2)当角C取最大值时,己知a=b=$\sqrt{3}$,点P为△ABC外接圆圆弧上-点,若$\overline{OP}=x\overline{OA}+y\overline{OB}$,求x•y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知下列命题:①${\overrightarrow{a}}^{2}$=${\overrightarrow{b}}^{2}$,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$;②若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,则($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$);③若向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$均为非零向量,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$.其中正确命题的序号是(  )
A.②③B.①②C.D.①②③

查看答案和解析>>

同步练习册答案