精英家教网 > 高中数学 > 题目详情
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理由;
(Ⅱ)若f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:(Ⅰ)若f(x)为“局部奇函数”,则根据定义验证条件是否成立即可;
(Ⅱ)根据f(x)为定义域R上的“局部奇函数,得到f(-x)=-f(x),恒成立,建立条件关系即可求实数m的取值范围.
解答: 解:(Ⅰ)若f(x)为“局部奇函数”等价于关于x的方程f(-x)+f(x)=0有解.
当f(x)=ax2+2x-4a时,
由f(-x)+f(x)=0得2a(x2-4)=0
解得x=±2,
所以方程f(-x)+f(x)=0有解,
因此f(x)为“局部奇函数”. 
(Ⅱ)当f(x)=4x-m•2x+1+m2-3时,f(-x)+f(x)=0可化为4x+4-x-2m(2x+2-x)+2m2-6=0.
令t=2x+2-x,则t≥2,
则4x+4-x=t2-2,
从而t2-2mt+2m2-8=0在t≥2有解即可保证f(x)为“局部奇函数”.   
令F(t)=t2-2mt+2m2-8,
1° 当F(2)≤0,t2-2mt+2m2-8=0在x≥2有解,
由F(2)≤0,即2m2-4m-4≤0,解得1-
3
≤m≤1+
3

2° 当F(2)>0时,t2-2mt+2m2-8=0在x≥2有解,等价于
△=4m2-4(2m2-8)≥0
m>2
F(2)>0

解得1+
3
<m≤2
2

(说明:也可转化为t2-2mt+2m2-8=0的大根大于等于2求解)
综上,所求实数m的取值范围为1-
3
≤m≤2
2
点评:本题主要考查与函数奇偶性有关的新定义,根据条件建立方程关系是解决本题的关键,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于数集X={-1,x1,x2,…,xn},其中0<x1<x2<…<xn,n≥2,定义向量的集合Y={
a
|
a
=(s,t),s∈X,t∈X},若对任意
a
1∈Y,存在
a
2∈Y,使得
a
l
a
2=0,则称X具有性质P.例如{-1,1,2}具有性质P.若X具有性质P,且x1=1,x2=q(q为常数),则有穷数列x1,x2,…,xn的通项公式为(  )
A、xi=qi-1,i=1,2,…,n
B、xi=1+(i-1)(q-1)i-1,i=1,2,…,n
C、xi=1+(i-1)q,i=1,2,…,n
D、xi=
q-2
2
i2+
4-q
2
i
,i=1,2,…n

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A、B、C成等差数列,sinC=
5
13
,求cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-1,a∈R,x∈R,设集合A={x|f(x)=x},集合B={x|f(f(x))=x},且A=B≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x∈R|x<-1或x>5},B={x∈R|a≤x≤a+4}.若A?B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x(x-1)≥0},Q={x|
1
x-a
>0},
(1)当a=-1时,求P∩Q,并在数轴上表示出来;
(2)如果P∩Q=Q,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是三角形的三边,且对于f(x)=x3-3b2x+2c3有f(a)=f(b)=0,那么三角形是什么三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2-2x-3
的单调减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

写出下列集合的关系:
(1)A={x|x=3k,k∈N},B={x|x=6m,m∈N}:
 

(2)A={x|x是4与10的最小公倍数},B={x|x=20n,n∈N+}:
 

(3)A={x|0<x<5},B={x|-1<x<5}:
 

(4)A={(x,y)|xy>0},B={(x,y)|x>0,y>0}:
 

查看答案和解析>>

同步练习册答案