精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,-<φ<0)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).

(1)求函数f(x)的解析式;
(2)若锐角θ满足cosθ=,求f(2θ)的值.

(1)f(x)=2cos(x-)
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)把的解析式Acos()+B的形式,并用五点法作出在一个周期上的简图;(要求列表)
(2)说出的图像经过怎样的变换的图像.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的值域;
(2)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元.

(1)求总费用y关于θ的函数.
(2)求最小的总费用和对应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某实验室一天的温度(单位:)随时间(单位:)的变化近似满足函数关系;
.
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.

(1)求经过1 s 后,∠BOA的弧度;
(2)求质点A,B在单位圆上第一次相遇所用的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

扇形AOB的周长为8 cm.
(1)若这个扇形的面积为3 cm2,求圆心角的大小;
(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,x∈R(其中A>0,ω>0,)的周期为π,且图象上一个最低点为M.
(1)求f(x)的解析式;
(2)当x∈时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?

查看答案和解析>>

同步练习册答案