精英家教网 > 高中数学 > 题目详情

已知
(1)求函数的值域;
(2)求函数的最大值和最小值.

(1) (2) 当时,,当时,

解析试题分析:
(1)根据余弦函数图像可直接得到函数在区间内的值域.
(2)化简三角函数式,显然需将转化为,函数变成关于的二次函数,利用换元法将其转化为二次函数形式,根据(1)中的结果,该问就是二次函数在固定区间上求最值得问题.
(1)因为 根据余弦函数的图像可知,函数的值域
(2) 
,根据(1)可知,所以函数为
该函数是开口向上的二次函数,其对称轴为,
所以当时,,当时,
考点:余弦函数固定区间求值域;二次函数固定区间求值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差列的前n项和为
(1)求数列的通项公式:
(2)若函数处取得最大值,且最大值为a2,求函数的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期及单调递减区间;
(2)若将函数的图像向右平移个单位,得到函数的图像,求在区间上的最大值和最小值,并求出相应的x的取值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过点,且函数图像的两相邻对称轴间的距离为.
(1)当时,求函数的值域;
(2)设,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小正周期和单调增区间;
(2)设,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学用“五点法”画函数在某一
个周期内的图象时,列表并填入的部分数据如下表:



















 
(1)请求出上表中的,并直接写出函数的解析式;
(2)将的图象沿轴向右平移个单位得到函数,若函数(其中)上的值域为,且此时其图象的最高点和最低点分别为,求夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知向量,设函数,且的图象过点和点.
(Ⅰ)求的值;
(Ⅱ)将的图象向左平移)个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,-<φ<0)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).

(1)求函数f(x)的解析式;
(2)若锐角θ满足cosθ=,求f(2θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数++(为常数)
(1)求函数的最小正周期;
(2)若函数上的最大值与最小值之和为,求实数的值.

查看答案和解析>>

同步练习册答案