精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知向量,设函数,且的图象过点和点.
(Ⅰ)求的值;
(Ⅱ)将的图象向左平移)个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.

(I).
(II)函数的单调递增区间为.

解析试题分析:(1)由题意知.
根据的图象过点,得到
解得.
(2)由(1)知:.
由题意知:
依题意知到点的距离为1的最高点为.
将其代入
可得,得到
,得

得到的单调递增区间为.
试题解析:(1)由题意知:.
因为的图象过点
所以

解得.
(2)由(1)知:.
由题意知:
的图象上符合题意的最高点为
由题意知:,所以
即到点的距离为1的最高点为.
将其代入
因为,所以
因此
,得

所以,函数的单调递增区间为.
考点:平面向量的数量积,三角函数的化简,三角函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的值域;
(2)当,时,函数的图象关于对称,求函数的对称轴;
(3)若图象上有一个最低点,如果图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得的图象,又知的所有正根从小到大依次为,…,…且,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=.
(1)求φ;
(2)求函数y=f(x)的单调增区间;
(3)画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的值域;
(2)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的部分图象如图所示.
(1)写出的最小正周期及图中的值;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ,边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4 万元.

(1)求总费用y关于θ的函数.
(2)求最小的总费用和对应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某实验室一天的温度(单位:)随时间(单位:)的变化近似满足函数关系;
.
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

扇形AOB的周长为8 cm.
(1)若这个扇形的面积为3 cm2,求圆心角的大小;
(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)
(I)求f(x)的最小正周期;
(II)若函数y=f(x)的图象按=()平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.

查看答案和解析>>

同步练习册答案