精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数++(为常数)
(1)求函数的最小正周期;
(2)若函数上的最大值与最小值之和为,求实数的值.

(1);(2)

解析试题分析:(1)利用两角和与差的正弦公式以及辅助角公式对进行三角恒等变形,即可得到
,从而的最小正周期;(2)由(1)中求得的的表达式,可得当时,,从而可求得,进一步可得
(1)∵ 
∴函数的最小正周期      6分;
,∴
∴当,即时,
,即时,,    
由题意,有   12分.
考点:1.三角恒等变形;2.三角函数的图像与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的值域;
(2)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

扇形AOB的周长为8 cm.
(1)若这个扇形的面积为3 cm2,求圆心角的大小;
(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,x∈R(其中A>0,ω>0,)的周期为π,且图象上一个最低点为M.
(1)求f(x)的解析式;
(2)当x∈时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数的图象与直线y=m相切,相邻切点之间的距离为.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使得函数在闭区间上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)
(I)求f(x)的最小正周期;
(II)若函数y=f(x)的图象按=()平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量, 设函数.
(1)求f (x)的最小正周期.
(2)求f (x)在上的最大值和最小值.

查看答案和解析>>

同步练习册答案