精英家教网 > 高中数学 > 题目详情
2.在正方体ABCD-A1B1C1D1中,平面C1-AB-C所成的二面角的大小是(  )
A.30°B.45°C.60°D.90°

分析 由C1B⊥AB,BC⊥AB,知∠C1BC是面C1-AB-C所成的二面角的平面角,由此能求出面C1-AB-C所成的二面角的大小.

解答 解∵AB⊥平面BCC1B1
∴C1B⊥AB,BC⊥AB,
∴∠C1BC是面C1-AB-C所成的二面角的平面角,
∵BC=CC1,且BC⊥CC1
∴∠C1BC=45°.
∴面C1-AB-C所成的二面角的大小为45°.
故选:B.

点评 本题考查二面角的大小的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知三棱锥S-ABC各顶点都在球O的球面上,若SA=SB=SC=1,且SA、SB、SC两两垂直,则球O的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某小卖部为了研究热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天热茶销售量与当天气温,并制作了对照表:
气温°C1496-5
茶销售量(杯)34444874
由表中数据算得线性回归方程$\widehaty=bx+a$中b≈-2
(1)求y对x的线性回归方程;
(2)预测当气温为-1℃时,热茶销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,已知在一个二面角的棱上有两个点A、B,线段AC、BD分别在这个二面角的两个面内,并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2$\sqrt{17}$cm,则这个二面角的度数为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥面D1AC.设AB=2.
(Ⅰ)求二面角E-AC-D1的大小; 
(Ⅱ)在D1E上是否存在一点P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在一个正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,CD的中点,点Q为平面SKABCD内一点,线段D1Q与OP互相平分,则满足$\overrightarrow{MQ}$=λ$\overrightarrow{MN}$的实数λ的值有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A1CD,所成二面角A1-CD-B的平面角为α,则(  )
A.∠A1CB≥αB.∠A1DB≤αC.∠A1DB≥αD.∠A1CB≤α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面ABCD是平行四边形,PB⊥面ABCD,BA=BD=$\sqrt{2}$,AD=2,E,F分别是棱AD,PC的中点.
(1)证明:EF∥平面PAB;
(2)若二面角P-AD-B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若抛物线y=x2-6x+5与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若圆C与直线x-y+a=0交于A,B两点,且CA⊥CB,求a的值.

查看答案和解析>>

同步练习册答案