精英家教网 > 高中数学 > 题目详情
20.已知f(x)=x+$\frac{1}{x}$-2,f(a)=3,则f(-a)=(  )
A.-8B.-7C.-5D.-3

分析 利用函数的解析式,化简求解即可.

解答 解:f(x)=x+$\frac{1}{x}$-2,f(a)=3,a+$\frac{1}{a}$=5,
f(-a)=-(a+$\frac{1}{a}$)-2=-5-2=-7.
故选:B.

点评 本题考查函数值的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.偶函数y=f(x)在区间(-∞,-1]上是增函数,则下列不等式成立的是(  )
A.f(-1)>f($\frac{\sqrt{3}}{3}$)B.f($\sqrt{2}$)>f(-$\sqrt{2}$)C.f(4)>f(3)D.f(-$\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线y=ex+a与y=(x-1)2恰好存在两条公切线,则实数a的取值范围为(  )
A.(-∞,2ln2+3)B.(-∞,2ln2-3)C.(2ln2-3,+∞)D.(2ln2+3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sin(3π-α)=2sin($\frac{π}{2}$+α),则$\frac{si{n}^{3}(π-α)-sin(\frac{π}{2}-α)}{3cos(\frac{π}{2}+α)+2cos(π+a)}$的值为-$\frac{3}{40}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,3,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到得32人中,编号落入区间[1,460]的人做问卷A,编号落入区间[461,761]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为:10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四组函数中表示同一个函数的是(  )
A.f(x)=x0与 g(x)=1B.f(x)=|x|与$g(x)=\sqrt{x^2}$
C.f(x)=x与 $g(x)=\frac{x^2}{x}$D.$f(x)=\root{3}{x^3}$与 $g(x)={(\sqrt{x})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C:x2+y2+8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A,B两点,且|AB|=2$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在射击训练中,某战士连续射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击至少有一次没有击中目标”可表示为(  )
A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二项式(ax-1)5(a>0)的展开式的第四项的系数为-40,则a的值为2.

查看答案和解析>>

同步练习册答案