精英家教网 > 高中数学 > 题目详情
3.一个算法的步骤如下:
第一步:输入正数m的值;
第二步:求出不超过m的最大整数x;
第三步:计算y=2x+x;
第四步:输出y的值.
如果输出y的值为20,则输入的m值只可能是下列各数中的(  )
A.3.1B.4.2C.5.3D.6.4

分析 由算法可知:20=2x+x,解得:x=4,结合x=4是不超过m的最大整数,结合选项即可得解.

解答 解:由算法可知:20=2x+x,x是整数.
解得:x=4,
由于x=4是不超过m的最大整数,结合选项可得m=4.2.
故选:B.

点评 本题主要考查了算法,考查读懂一些简单算法的能力,对算法的了解是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知 {an}是等差数列,其公差为非零常数 d,前 n 项和为 Sn.设数列{$\frac{S_n}{n}$}的前 n 项和为 Tn,当且仅当 n=6 时,Tn有最大值,则$\frac{a_1}{d}$的取值范围是(  )
A.(-∞,-$\frac{5}{2}$)B.(-3,+∞)C.(-3,-$\frac{5}{2}$)D.(-3,+∞)∪(-$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=(a2-a-1)xa(a是常数)为幂函数,且在第一象限单调递增.
(1)求f(x)的表达式;
(2)讨论函数g(x)=$\frac{f(x)+3x+1}{x}$在(-$\sqrt{2}$,+∞)上的单调性,并证之.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线x=a(a>0)分别与直线y=3x+3,曲线y=2x+lnx交于A、B两点,则|AB|最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα-βsinβ>0,则必有(  )
A.α2<β2B.α2>β2C.α<βD.α>β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,在其定义域上是偶函数的是(  )
A.y=sinxB.y=|sinx|C.y=tanxD.y=cos(x-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的通项公式为an=n-11,当其前n项和Sn取得最小值时,n等于10或11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=2,an+1=2-$\frac{1}{{a}_{n}}$(n=1,2,3,…).
(Ⅰ)求a2,a3,a4的值,猜想出数列的通项公式an
(Ⅱ)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知复数z满足$\frac{z}{1+i}$=2-i,则z=3+i.

查看答案和解析>>

同步练习册答案