| A. | $3\sqrt{3}$ | B. | $2\sqrt{7}$ | C. | $\frac{20}{3}$ | D. | $\frac{17}{3}$ |
分析 利用等比数列以及等差数列的关系,求出公差,然后利用通项公式以及前n项和,化简所求表达式,求解最小值即可.
解答 解:由于a2,a5-1,a10成等比数列,所以(a5-1)2=a2a10,
(a1+4d-1)2=(a1+d)(a1+9d),a1=5,解得d=3,an=3n+2,Sn=$\frac{3}{2}{n}^{2}+\frac{7}{2}n$,
所以$\frac{{2{S_n}+n+32}}{{{a_n}+1}}$=$\frac{3{n}^{2}+8n+32}{3n+3}$=$\frac{1}{3}$[3(n+1)+$\frac{27}{n+1}+2$]$≥\frac{20}{3}$.
故选:C.
点评 本题考查等差数列以及等比数列的应用,考查数列的通项公式以及前n项和,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,$\sqrt{2}$] | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | ($\frac{\sqrt{2}}{2}$,$\sqrt{2}$) | D. | (1,$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $\frac{2}{3}$ | C. | -$\frac{1}{9}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com