精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.PC=1,BC=1.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PB;
(3)求点C到平面ABP的距离.
考点:点、线、面间的距离计算,直线与平面平行的判定
专题:计算题,空间位置关系与距离
分析:(1)由D,E分别是AB,PB的中点,结合三角形中位线定理和线面平行的判定定理可得DE∥平面PAC;
(2)由线面垂直的性质,可得PC⊥AB,结合AB⊥BC和线面垂直的判定定理可得AB⊥平面PBC,再由线面垂直的性质可得AB⊥PB;
(3)点C到平面PAB的距离为h,由等体积法得:VC-PAB=VP-ABC,即可求点C到平面ABP的距离.
解答: (1)证明:∵D,E分别是AB,PB的中点,∴DE∥AP. …(2分)
∵AP?平面PAC,且DE?平面PAC,
∴DE∥平面PAC                            …(5分)
(2)证明:∵PC⊥平面ABC,AB?平面ABC,
∴PC⊥AB        …(7分)
∵AB⊥BC,且PC∩BC=C,PC、BC?平面PBC,
∴AB⊥平面PBC------------(9分)
∵PB?平面PBC,∴AB⊥PB------------(10分)
(3)解:∵PC⊥平面ABC,BC?平面ABC,
∴PC⊥BC
在Rt△PBC中,由勾股定理得PB2=PC2+BC2=12+12=2,∴PB=
2
…(11分)
由(2)证知△PAB是直角三角形,
设点C到平面PAB的距离为h,由等体积法得:VC-PAB=VP-ABC
1
3
S△PAB•h=
1
3
S△ABC•PC
,∴h=
S△ABC•PC
S△PAB
=
1
2
AB•BC•PC
1
2
AB•PB
=
BC•PC
PB
=
1×1
2
=
2
2

即点C到平面PAB的距离为
2
2
.…(14分)
点评:本题考查直线与平面平行的判定,直线与平面垂直的性质,考查点到平面的距离,解答的关键是熟练掌握空间线面关系的判定定理及性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,f(-x)=f(x)且f(x)=f(x+2),当0≤x≤1时,f(x)=x2,若方程f(x)=x+a有两个不等实根,那么实数a的值为(  )
A、2k或2k-
1
4
(k∈z)
B、k或k-
1
4
(k∈z)
C、2k(k∈z)
D、k(k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:

用”辗转相除法”求得98与63的最大公约数是(  )
A、17B、14C、9D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

将A,B,C,D,E五种不同的文件随机地放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屈至多放一种文件,则文件A,B被放在相邻的抽屉内且文件C,D被放在不相邻的抽屉内的概率是(  )
A、
2
21
B、
4
21
C、
8
21
D、
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1
(1)求证:DF∥平面ABC; 
(2)求二面角F-AC1-C的余弦值; 
(3)求点C1到平面AFC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内?
(2)在(1)的条件下,当x为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=Asin(ωx+φ)在一个周期内的图象如图,求此函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…log3an,若cn=-
1
bn
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3).
(1)求AB边上的高线所在的直线方程;
(2)求三角形ABC的面积.

查看答案和解析>>

同步练习册答案