| A. | $(-∞\;,\;ln(\sqrt{2}+1)]$ | B. | $[ln(\sqrt{2}-1)\;,\;+∞)$ | ||
| C. | $[ln(\sqrt{2}-1)\;,\;ln(\sqrt{2}+1)]$ | D. | $(-∞\;,\;ln(\sqrt{2}-1)]∪$$[ln(\sqrt{2}+1)\;,\;+∞)$ |
分析 利用偶函数的性质表示已知不等式变形,再利用函数的单调性转化为关于t的对数不等式,求解对数不等式得答案.
解答 解:∵f(x)是偶函数,∴$f[ln(\sqrt{2}-1)]=f[-ln(\sqrt{2}+1)]=f[ln(\sqrt{2}+1)]$.
于是,原不等式可化为$f[ln(\sqrt{2}+1)]≥f(|t|)$,
由函数f(x)在[0,+∞)上是增函数,得$ln(\sqrt{2}+1)≥|t|$,
解得:$ln(\sqrt{2}-1)≤t≤ln(\sqrt{2}+1)$.
∴t的取值范围$[ln(\sqrt{2}-1)\;,\;ln(\sqrt{2}+1)]$.
故选:C.
点评 本题考查函数的奇偶性和单调性,考查数学转化思想方法,考查了对数不等式的解法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1)和(1,2) | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com