【题目】如图,在各棱长均为2的正三棱柱中, 分别为棱与的中点, 为线段上的动点,其中, 更靠近,且.
(1)证明: 平面;
(2)若与平面所成角的正弦值为,求异面直线与所成角的余弦值.
【答案】(1)证明见解析.
(2).
【解析】试题分析:(1)根据正三角形性质得,结合线面垂直得.因此可得平面,即.再根据,得平面,(2)先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解平面法向量,根据向量数量积求夹角,再根据线面角与向量夹角互余关系列方程,解得N坐标,最后根据向量数量积求异面直线与所成角的余弦值.
试题解析:解:(1)证明:由已知得为正三角形,为棱的中点,
∴,
在正三棱柱中,底面,则.
又,∴平面,∴.
易证,又,∴平面.
(2)解:取的中点,的中点,则,,
以为坐标原点,建立如图所示的空间直角坐标系,
则,,,,
设 ,
则 ,
易知是平面的一个法向量,
∴ ,解得.
∴, , ,,
∴ ,
∴异面直线与所成角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)在线段上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程是(为参数),曲线的参数方程是(为参数).
(Ⅰ)将曲线,的参数方程化为普通方程;
(Ⅱ)求曲线上的点到曲线的距离的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)对任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.
(1)求证:f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,已知都是边长为的等边三角形,为中点,且平面,为线段上一动点,记.
(1)当时,求异面直线与所成角的余弦值;
(2)当与平面所成角的正弦值为时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题 : 表示双曲线,命题 : 表示椭圆。
(1)若命题与命题 都为真命题,则 是 的什么条件?
(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)
(2)若 为假命题,且 为真命题,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B. “m=1”是“直线x-my=0和直线x+my=0互相垂直”的充要条件
C. 命题“,使得”的否定是﹕“,均有”
D. 命题“已知、B为一个三角形的两内角,若A=B,则sinA=sinB”的否命题为真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com