精英家教网 > 高中数学 > 题目详情
为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:
甲公司某员工A 乙公司某员工B
3 9 6 5 8 3 3 2 3 4 6 6 6 7 7
0 1 4 4 2 2 2
每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(Ⅰ)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(Ⅱ)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;
(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.
考点:离散型随机变量的期望与方差,众数、中位数、平均数
专题:概率与统计
分析:(Ⅰ)由茎叶图能求出甲公司员工A投递快递件数的平均数和众数.
(Ⅱ)由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.
(Ⅲ)利用(Ⅱ)的结果能估算算两公司的每位员工在该月所得的劳务费.
解答: 解:(Ⅰ)甲公司员工A投递快递件数的平均数为:
.
x
=
1
10
(32+33+33+38+35+36+39+33+41+40)=36,
众数为33.(2分)
(Ⅱ)设a为乙公司员工B投递件数,则
当a=34时,X=136元,当a>35时,X=35×4+(a-35)×7元,
∴X的可能取值为136,147,154,189,203,(4分)
P(X=136)=
1
10

P(X=147)=
3
10

P(X=154)=
2
10

P(X=189)=
3
10

P(X=203)=
1
10

X的分布列为:
X 136 147 154 189 203
P
1
10
3
10
2
10
3
10
1
10
(9分)
E(X)=136×
1
10
+147×
3
10
+154×
2
10
+189×
3
10
+203×
1
10
=
1655
10
=165.5(元)
.(11分)
(Ⅲ)根据图中数据,由(Ⅱ)可估算:
甲公司被抽取员工该月收入=36×4.5×30=4860元,
乙公司被抽取员工该月收入=165.5×30=4965元.(13分)
点评:本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级.某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.

(1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场共10人得分大于7分,其中2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
xsinβ
1-xcosβ
,tanβ=
ysinα
1-ycosα
,求证:
sinα
sinβ
=
x
y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷等差数列{an},首项a1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{bn}
(1)求b1和b2
(2)求{bn}的通项公式;
(3){bn}中的第110项是{an}中的第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线y2=2px(p>0)的焦点,R,S,T为该抛物线上三点,若
FR
+
FS
+
FT
=
0
,且|
FR
|+|
FS
|+|
ST
|=6.
(Ⅰ)求抛物线y2=2px的方程;
(Ⅱ)M点的坐标为(m,0)其中m>0,过点F作斜率为k1的直线与抛物线交于A,B两点,A,B两点的横坐标均不为m,连接AM、BM并延长交抛物线于C、D两点,设直线CD的斜率为k2
k1
k2
=4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=cosx+i,z2=1-isinx,x∈R.
(1)求|z1-z2|的最小值;
(2)设z=z1•z2,记f(x)=Imz(Imz表示复数z的虚部).将函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图象向右平移
π
2
个单位长度,得到函数g(x)的图象.试求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(x+1)n的二项展开式中,按x的降幂排列,只有第5项的系数最大,则各项的二项式系数之和为
 
(答案用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=1-2sin2
x
2
的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点M(0,2),N(-
3
,3m2+12m+13)(m∈R)的直线l的斜率k的取值范围是
 

查看答案和解析>>

同步练习册答案