精英家教网 > 高中数学 > 题目详情
2.函数y=8x2-lnx在区间$({0,\frac{1}{4}})$和$({\frac{1}{2},1})$内分别为(  )
A.增函数,增函数B.增函数,减函数C.减函数,增函数D.减函数,减函数

分析 对函数y求导,利用y′判断函数y的单调性,从而得出函数y在区间$({0,\frac{1}{4}})$和$({\frac{1}{2},1})$的单调性.

解答 解:∵函数y=8x2-lnx,x>0;
∴y′=16x-$\frac{1}{x}$=$\frac{1{6x}^{2}-1}{x}$;
令y′=0,
解得x=±$\frac{1}{4}$;
∴当x∈$({0,\frac{1}{4}})$时,y′<0,y是减函数,
当x∈$({\frac{1}{2},1})$时,y′>0,y是增函数;
∴函数y在区间$({0,\frac{1}{4}})$和$({\frac{1}{2},1})$内分别为减函数,增函数.
故选:C.

点评 本题考查了利用导数判断函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.正方形ABCD的边长为2,E是线段CD的中点,F是线段BE上的动点,则$\overrightarrow{BF}$•$\overrightarrow{FC}$的取值范围为[-1,$\frac{4}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,则m的取值范围是(  )
A.m≤$\frac{4}{3}$B.m<$\frac{4}{3}$C.m≥$\frac{4}{3}$D.m>$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax+b,当x=-2时,f(x)有极大值18.
(1)求a,b的值;
(2)求函数y=f (x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{2}{x}$+alnx-2(a∈R).
(1)当a=2时,求f(x)的单调区间;
(2)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)与x轴有两个不同的交点,求b的取值范围;
(3)若函数f(x)在区间[e-1,e]上的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=2px的焦点为F,过其焦点且斜率为1的直线交抛物线于M、N两点,若线段MN中点纵坐标为4,则该抛物线准线方程为(  )
A.x=1B.x=-1C.x=2D.x=-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x3+bx2+cx的图象如图所示,则x13+x23=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线y2=4x的焦点为F,过F的直线与抛物线交于A(x1,x2),B(x2,y2)两点,则y12+y22的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数a是常数,f(x)=(x+a)2-3ln(x+1)-5,当x>0时,f(x)是增函数,求a的取值范围?

查看答案和解析>>

同步练习册答案