精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,则m的取值范围是(  )
A.m≤$\frac{4}{3}$B.m<$\frac{4}{3}$C.m≥$\frac{4}{3}$D.m>$\frac{4}{3}$

分析 根据题意得出f′(x)≥0恒成立,即△≤0,求出m的取值范围.

解答 解:∵函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,
∴f′(x)=3x2+4x+m≥0恒成立,
即△=16-4×3m≤0,
解得m≥$\frac{4}{3}$;
∴m的取值范围是m≥$\frac{4}{3}$.
故选:C.

点评 本题考查了利用导数判断函数的单调性问题,也考查了不等式恒成立的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在同一坐标系中,将曲线4x2+9y2=36变为曲线x′2+y′2=1的伸缩变换是$\left\{\begin{array}{l}{x′=\frac{x}{3}}\\{y′=\frac{y}{2}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,点(n,$\frac{{S}_{n}}{n}$)在直线y=$\frac{1}{2}$x+$\frac{11}{2}$上
(1)求数列{an}的通项公式;
(2)bn=2${\;}^{{a}_{n}}$,求证:{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx.
(1)求函数f(x)的单调区间和最小值;
(2)当b>0时,求证:bb≥($\frac{1}{e}$)${\;}^{\frac{1}{n}}$(其中e为自然对数的底数);
(3)若a>0,b>0求证:f(x)+(a+b)ln2≥f(a+b)-f(b).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y2=8x的焦点坐标是(  )
A.(4,0)B.(2,0)C.(0,2)D.(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3-ax-1,
(1)若a=3,试讨论f(x)的单调性.
(2)若f(x)在区间(1,+∞)内为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.x=-$\frac{1}{4}$为准线的抛物线的标准方程为(  )
A.y2=xB.y2=$\frac{1}{2}$xC.x2=$\frac{1}{2}$yD.x2=y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=8x2-lnx在区间$({0,\frac{1}{4}})$和$({\frac{1}{2},1})$内分别为(  )
A.增函数,增函数B.增函数,减函数C.减函数,增函数D.减函数,减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知3x+5y=20,求x2+y2的最小值.

查看答案和解析>>

同步练习册答案