精英家教网 > 高中数学 > 题目详情

【题目】已知平行四边形ABCD的三个顶点的坐标为

中求边AC的高线所在直线的一般方程;

求平行四边形ABCD的对角线BD的长度;

求平行四边形ABCD的面积.

【答案】(1);(3)

【解析】

先由AC两点坐标,得出直线AC斜率,求出边AC的高线的斜率,再由B点坐标,即可得出结果;

(2)AC的中点为M,得到M点坐标,再设,由MBD中点,可列方程组求出D点坐标,进而可求出结果;

(3)先由BC坐标得出直线BC的方程,以及BC长度,再由点到直线距离公式,求出点A到直线BC的距离,即可求解.

AC的高线的斜率

AC的高线所在的直线方程为,即

AC的中点为M,则,设,则,解得

易知直线BC方程为:

则点BC的距离为

平行四边形ABCD的面积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求证; 

2)求平面与平面所成二面角的大小;

3)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,椭圆的长轴长为8,离心率为

求椭圆方程;

椭圆内接四边形ABCD的对角线交于原点,且,求四边形ABCD周长的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

1)证明:是等比数列,是等差数列;

2)求的通项公式;

3)令,求数列的前项和的通项公式,并求数列的最大值、最小值,并指出分别是第几项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,E是棱的中点,F是侧面内的动点,且平面,给出下列命题:

F的轨迹是一条线段;不可能平行;BE是异面直线;平面不可能与平面平行.

其中正确的个数是  

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形,平面.

)求证:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

判断函数极值点的个数,并说明理由;

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年冬季青奥会即将在瑞士盛大开幕,为了在射击比赛中取得优异成绩,某国拟从甲、乙两位选手中派出一位随代表团参赛,现两人进行了5次射击,射击成绩如下表(单位:分),则应派出选手及其标准差为(

选手

次数

第一次

第二次

第三次

第四次

第五次

7.4

8.1

8.6

8.0

7.9

7.8

8.4

7.6

8.1

8.1

A.甲,0.148B.乙,0.076C.甲,D.乙,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左右焦点,左右顶点为是双曲线上任意一点,则分别以线段为直径的两圆的位置关系为( )

A. 相交B. 相切C. 相离D. 以上情况均有可能

查看答案和解析>>

同步练习册答案