精英家教网 > 高中数学 > 题目详情
已知不等式|2x+y-m|<3表示的平面区域包含点(0,0)和点(-1,1),求实数m的取值范围.
考点:简单线性规划
专题:不等式的解法及应用
分析:已知两点在不等式表示的平面区域内,即两点是不等式的解,分别代入解不等式即可得m的取值范围
解答: 解:∵不等式|2x+y+m|<3表示的平面区域包含点(0,0)和点(-1,1),
|0+0-m|<3
|-2+1-m|<3
解得:-3<m<2
∴m的取值范围是(-3,2)
故答案为:(-3,2 )
点评:本题主要考查了二元一次不等式表示平面区域的知识,点与平面区域间的关系,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用反证法证明:对于直线l:y=x+k,不存在这样的实数k,是的l与双曲线C:3x2-y2=1的交点A,B关于直线y=-x对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}中,Sn为其前n项和,已知a2a4=1,S3=7.
(1)求数列{an}的通项公式;
(2)若bn=
1
8
anlog2an,Tn=b1+b2+…+bn(n∈N*),求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=5.
(1)直线l过点A(4,0),且与圆O相切,求直线l的方程;
(2)直线l过点A(1,2),且与圆O相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:复数z=1-i在复平面内对应的点位于第四象限;命题q:?x0>0,使x0=cosx0,则下列命题中为真命题的是(  )
A、(¬p)∧(¬q)
B、(¬p)∧q
C、p∧(¬q)
D、p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

组合式
C
0
n
-2
C
1
n
+4
C
2
n
-8
C
3
n
+…+(-2)n
C
n
n
的值等于(  )
A、(-1)n
B、1
C、3n
D、3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的三个角A,B,C所对的边分别为a,b,c,且A=60°,c=3b,求:
(1)
a
c
的值;
(2)tanB+tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意的实数x,存在不为0的常数r使得f(x+r)=-rf(x)恒成立,则称f(x)是一个“关于r函数”,下列“关于r函数”的结论正确的是(  )
A、f(x)=0是常数函数中唯一一个“关于r函数”
B、f(x)=x2是一个“关于r函数”
C、f(x)=sinπx不是一个“关于r函数”
D、“关于
1
2
函数”至少有一个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点.
(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME 与 BN 所成角的余弦值.

查看答案和解析>>

同步练习册答案