精英家教网 > 高中数学 > 题目详情
16.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.

(1)求证:AM∥平面BEC;
(2)求点D到平面BEC的距离.

分析 (1)取EC中点N,连结MN,BN.由三角形中位线的性质证得MN∥AB,且MN=AB.由此可得四边形ABNM为平行四边形.得到BN∥AM.再由线面平行的判定得答案;
(2)由VE-BCD=VD-BCE,利用等积法求得点D到平面BEC的距离.

解答 解:(1)证明:取EC中点N,连结MN,BN. 在△EDC中,M,N分别为EC,ED的中点,
∴MN∥CD,且MN=$\frac{1}{2}$CD. 由已知AB∥CD,$AB=\frac{1}{2}CD$,
∴MN∥AB,且MN=AB.
∴四边形ABNM为平行四边形.
BN∥AM.
又∵BN?平面BEC,且AM?平面BEC,
∴AM∥平面BEC.
(2)由已知可得BC⊥平面BDE,
∵BE?平面BDE,∴BC⊥BE,
∴${S}_{△BCD}=\frac{1}{2}BD•BC=\frac{1}{2}\sqrt{2}•\sqrt{2}=1$.
${S}_{△BCE}=\frac{1}{2}BE•BC=\frac{1}{2}\sqrt{2}•\sqrt{3}=\frac{\sqrt{6}}{2}$.
又VE-BCD=VD-BCE,设点D到平面BEC的距离为h.
则$\frac{1}{3}{S}_{△BCD}•DE=\frac{1}{3}•{S}_{△BCE}•h$,
∴$h=\frac{{S}_{△BCD}•DE}{{S}_{△BCE}}=\frac{1}{\frac{\sqrt{6}}{2}}=\frac{\sqrt{6}}{3}$.

点评 本题主要考查直线与平面之间的平行、垂直等位置关系,二面角的概念、求法等知识,以及空间想象能力和逻辑推理能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的通项公式为an=3n-2n,求它的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若正四棱锥的底面边长为$2\sqrt{3}cm$,体积为4cm3,则它的侧面积为8$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*
(Ⅰ)求f(x)的解析式;
(Ⅱ)若数列{an}满足$\frac{1}{{{a_{n+1}}}}={f^'}(\frac{1}{a_n})$,且a1=4,求数列{an}的通项公式;
(Ⅲ)记bn=$\sqrt{{a_n}{a_{n+1}}}$,数列{bn}的前n项和Tn,求证:$\frac{4}{3}≤{T_n}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论
(1)AC1⊥BC;   
(2)$\frac{AD}{D{C}_{1}}$=1;
(3)面FAC1⊥面ACC1A1
(4)三棱锥D-ACF的体积为$\frac{\sqrt{3}}{3}$.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,F1,F2分别是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),且△BF1F2是边长为2的等边三角形.
(1)求椭圆的方程;
(2)过右焦点F2的直线l与椭圆交于A,C两点,记△ABF2,△BCF2的面积分别为S1,S2.若S1=2S2,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了保证信息安全,传输必须加密,有一种加密、解密方式,其原理如下:明文$\stackrel{加密}{→}$密文$\stackrel{发送}{→}$密文$\stackrel{解密}{→}$明文,已知加密函数为y=xα-1(x为明文,y为密文),如果明文“3”通过加密后得到密文为“26”,再发送,接受方通过加密得到明文“3”,若接受方接到密文为“7”,则原发的明文是(  )
A.7B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+$\frac{a}{x}$(x>0).
(1)当a=2时,求函数f(x)的单调区间;
(2)若f(x)在[1,e]上的最小值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD⊥平面PCD,PA⊥CB,AB=2AD=2CD=2,E为PB的中点
(1)证明:平面PAC⊥平面PBC;
(2)若直线PA与平面EAC所成角的正弦值为$\frac{\sqrt{2}}{3}$,求二面角P-AC-E的余弦值.

查看答案和解析>>

同步练习册答案