精英家教网 > 高中数学 > 题目详情
9.已知数列{an}的通项公式为an=3n-2n,求它的前n项和Sn

分析 首先针对数列的通项公式的特点,利用分组的方法进行求和,进一步利用等比数列的前n项和公式进行应用,最后求出结果.

解答 解:已知数列{an}的通项公式为:${a}_{n}={3}^{n}-{2}^{n}$,
则:Sn=a1+a2+…+an
=31-21+32-22+…+3n-2n
=(31+32+…+3n)-(21+22+…+2n
=$\frac{3(1-{3}^{n})}{1-3}$-$\frac{2(1-{2}^{n})}{1-2}$
=$\frac{3({3}^{n}-1)}{2}-2({2}^{n}-1)$
=$\frac{{3}^{n+1}}{2}-{2}^{n+1}+\frac{1}{2}$

点评 本题考查的知识要点:利用分组求和的方法求数列的和,等比数列前n项和的应用,主要考查学生的应用能力和计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.过圆x2+y2=2与外一点P(6,-8),作圆的一条切线PA,A为切点,求线段PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知⊙O的直径为AB,点C为⊙O上异于A,B的一点,BC⊥VA,AC⊥VB.
(Ⅰ)求证:VC⊥平面ABC;
(Ⅱ)已知AC=1,VC=2,AB=3,点M为线段VB的中点,求两面角B-MA-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列四个命题:
①已知函数f(x)=$\left\{\begin{array}{l}{1,(x为有理数)}\\{0,(x为无理数)}\end{array}\right.$,则f(x)为偶函数;
②函数y=(x+1)2+1(x≥0)与函数y=-1+$\sqrt{x-1}$(x≥1)互为反函数;
③函数f(x)=e-xx2在x=2处取得极大值;
④已知函数y=f(x)的图象在M(1,f(1))处的切线方程是y=$\frac{1}{2}$x+2,则f(1)+f′(1)=3.
其中真命题的代号是①②③④(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化下列二次积分为极坐标形式:${∫}_{0}^{1}$dx${∫}_{0}^{1}$f(x,y)dy.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数(2+i)(1+ai)是纯虚数(i是虚数单位,a是实数),则a等于(  )
A.-1B.$-\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),若f($\frac{π}{6}$)=f($\frac{π}{2}$),且f(x)在区间($\frac{π}{6}$,$\frac{π}{2}$)内有最大值,无最小值,则ω的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过双曲线C:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{9}$=1的左焦点作倾斜角为$\frac{π}{6}$的直线l,则直线l与双曲线C的交点情况是直线和双曲线有两个交点,且为左右两支各一个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.

(1)求证:AM∥平面BEC;
(2)求点D到平面BEC的距离.

查看答案和解析>>

同步练习册答案